These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 1363912)
1. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes. Atkins WM; Villafranca JJ Protein Sci; 1992 Mar; 1(3):342-55. PubMed ID: 1363912 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop. Atkins WM; Stayton PS; Villafranca JJ Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions. Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638 [TBL] [Abstract][Full Text] [Related]
4. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants. Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C. She M; Dong WJ; Umeda PK; Cheung HC Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821 [TBL] [Abstract][Full Text] [Related]
6. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
7. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis. Witmer MR; Palmieri-Young D; Villafranca JJ Protein Sci; 1994 Oct; 3(10):1746-59. PubMed ID: 7849593 [TBL] [Abstract][Full Text] [Related]
8. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive. Pearson JT; Dabrowski MJ; Kung I; Atkins WM Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Royer CA Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911 [TBL] [Abstract][Full Text] [Related]
10. Subunit interaction in unadenylylated glutamine synthetase from Escherichia coli. Evidence from methionine sulfoximine inhibition studies. Rhee SG; Chock PB; Wedler FC; Sugiyama Y J Biol Chem; 1981 Jan; 256(2):644-8. PubMed ID: 6108959 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry. Vos R; Engelborghs Y; Izard J; Baty D Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033 [TBL] [Abstract][Full Text] [Related]
12. Resolving the fluorescence response of Escherichia coli carbamoyl phosphate synthetase: mapping intra- and intersubunit conformational changes. Johnson JL; West JK; Nelson AD; Reinhart GD Biochemistry; 2007 Jan; 46(2):387-97. PubMed ID: 17209549 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence lifetimes of the tryptophan residues in ornithine transcarbamoylase. Shen WH Biochemistry; 1993 Dec; 32(50):13925-32. PubMed ID: 8268168 [TBL] [Abstract][Full Text] [Related]
14. Epsilon-adenylylated glutamine synthetase: an internal fluorescence probe for enzyme conformation. Chock PB; Huang CY; Timmons RB; Stadtman ER Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3134-8. PubMed ID: 4150372 [TBL] [Abstract][Full Text] [Related]
15. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface. Strasser F; Dey J; Eftink MR; Plapp BV Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
17. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Royer CA; Mann CJ; Matthews CR Protein Sci; 1993 Nov; 2(11):1844-52. PubMed ID: 8268795 [TBL] [Abstract][Full Text] [Related]
18. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927 [TBL] [Abstract][Full Text] [Related]
19. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1-1: microconformational changes induced by S-hexyl glutathione. Wang RW; Bird AW; Newton DJ; Lu AY; Atkins WM Protein Sci; 1993 Dec; 2(12):2085-94. PubMed ID: 8298458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]