BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 1364239)

  • 1. Quantitative immunohistochemical distributions of tyrosine hydroxylase and calmodulin in the brains of spontaneously hypertensive rats.
    Akiyama K; Yabe K; Sutoo D
    Kitasato Arch Exp Med; 1992 Dec; 65(4):199-208. PubMed ID: 1364239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of clonidine on tyrosine hydroxylase activity in the adrenal medulla and brain of spontaneously hypertensive rats.
    Moura E; Afonso J; Serrão MP; Vieira-Coelho MA
    Basic Clin Pharmacol Toxicol; 2009 Feb; 104(2):113-21. PubMed ID: 19067675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease of central dopamine level in the adult spontaneously hypertensive rats related to the calcium metabolism disorder.
    Sutoo D; Akiyama K; Matsukura T; Nakamoto RK
    Brain Res Bull; 1993; 30(1-2):107-13. PubMed ID: 8420619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple analysis of tyrosine hydroxylase and calmodulin distributions in the forebrain of the rat using a microphotometry system.
    Sutoo D; Akiyama K; Yabe K; Kohno K
    Brain Res Bull; 1991 Jun; 26(6):973-82. PubMed ID: 1682018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat.
    de Jong W; Linthorst AC; Versteeg HG
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1193-6. PubMed ID: 8572872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A defective beta-hydroxylation of dopamine may precede the full development of hypertension in spontaneously hypertensive rats.
    Kuchel O; Racz K; Debinski W; Buu NT
    Can J Cardiol; 1989 Sep; 5(6):327-31. PubMed ID: 2790580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased tyrosine hydroxylase activity in the adrenals of spontaneously hypertensive rats.
    Moura E; Pinho Costa PM; Moura D; Guimarães S; Vieira-Coelho MA
    Life Sci; 2005 May; 76(25):2953-64. PubMed ID: 15820506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain.
    Sutoo D; Akiyama K; Yabe K
    J Neurosci Res; 2001 Mar; 63(5):369-76. PubMed ID: 11223911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Monoamine contents and norepinephrine turnover in brain stem nuclei of young and adult spontaneously hypertensive and Wistar-Kyoto rats].
    Yao H
    Fukuoka Igaku Zasshi; 1990 Nov; 81(11):370-83. PubMed ID: 2272599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR.
    Grundt A; Grundt C; Gorbey S; Thomas MA; Lemmer B
    Physiol Behav; 2009 Jun; 97(3-4):341-6. PubMed ID: 19268675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The relationship between regional sympathetic activity and the onset of arterial hypertension in spontaneously hypertensive rats].
    Cabassi A; Vinci S; Calzolari M; Bruschi G; Cavatorta A; Borghetti A
    Cardiologia; 1997 Apr; 42(4):393-6. PubMed ID: 9244643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal regulation of intestinal calbindin (CaBP9k) and calmodulin in the spontaneously hypertensive rat.
    Drüeke TB; Chabanis S; Roullet C; Duchambon P; Lacour B; McCarron DA
    Am J Med Sci; 1994 Feb; 307 Suppl 1():S96-101. PubMed ID: 8141174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain.
    Li Q; Lu G; Antonio GE; Mak YT; Rudd JA; Fan M; Yew DT
    Neurochem Int; 2007 May; 50(6):848-57. PubMed ID: 17395336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison analysis of distributions of tyrosine hydroxylase, calmodulin and calcium/calmodulin-dependent protein kinase II in a triple stained slice of rat brain.
    Sutoo D; Akiyama K; Yabe K
    Brain Res; 2002 Apr; 933(1):1-11. PubMed ID: 11929630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased total volume and dopamine β-hydroxylase immunoreactivity of carotid body in spontaneously hypertensive rats.
    Kato K; Wakai J; Matsuda H; Kusakabe T; Yamamoto Y
    Auton Neurosci; 2012 Jul; 169(1):49-55. PubMed ID: 22546625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nutrient profiles of the Dietary Approaches to Stop Hypertension (DASH) diets on blood pressure and bone metabolism and composition in normotensive and hypertensive rats.
    Doyle L; Cashman KD
    Br J Nutr; 2003 May; 89(5):713-24. PubMed ID: 12720595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal regulation of cytosolic free calcium in vascular endothelial cells from spontaneously hypertensive rats.
    Wang R; Sauvé R; de Champlain J
    J Hypertens; 1995 Sep; 13(9):993-1001. PubMed ID: 8586835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart and red blood cell antioxidant status and plasma lipid levels in the spontaneously hypertensive and normotensive Wistar-Kyoto rat.
    Yuan YV; Kitts DD; Godin DV
    Can J Physiol Pharmacol; 1996 Mar; 74(3):290-7. PubMed ID: 8773409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo effect of calcitriol on calcium transport and calcium binding proteins in the spontaneously hypertensive rat.
    Roullet CM; Roullet JB; Martin AS; McCarron DA
    Hypertension; 1994 Aug; 24(2):176-82. PubMed ID: 8039841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats.
    Linthorst AC; van Giersbergen PL; Gras M; Versteeg DH; de Jong W
    Brain Res; 1994 Mar; 639(2):261-8. PubMed ID: 8205480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.