BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1364630)

  • 1. Rapid counting method of living cells by fluorescent enzyme substrates.
    Sugata K; Ohnishi T; Matsumoto K
    Biomed Mater Eng; 1991; 1(2):115-25. PubMed ID: 1364630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound.
    Ananta E; Voigt D; Zenker M; Heinz V; Knorr D
    J Appl Microbiol; 2005; 99(2):271-8. PubMed ID: 16033457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of viable yeast cells by gravitational field-flow fractionation with fluorescence detection.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2004; 20(2):613-8. PubMed ID: 15059009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic study of cell proliferation of Saccharomyces cerevisiae strains by sedimentation/steric field flow fractionation in situ.
    Farmakis L; Koliadima A
    Biotechnol Prog; 2005; 21(3):971-7. PubMed ID: 15932282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent staining with bromocresol purple: a rapid method for determining yeast cell dead count developed as an assay of killer toxin activity.
    Kurzweilová H; Sigler K
    Yeast; 1993 Nov; 9(11):1207-11. PubMed ID: 7509098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous quantitative determination of electroporative molecular uptake and subsequent cell survival using gel microdrops and flow cytometry.
    Gift EA; Weaver JC
    Cytometry; 2000 Apr; 39(4):243-9. PubMed ID: 10738276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection of lactobacillus and yeast concentrations using a particle size distribution analyser.
    Kim H; Park K; Oh S; Chang IS
    J Appl Microbiol; 2009 Nov; 107(5):1499-504. PubMed ID: 19426260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product.
    Breeuwer P; Drocourt JL; Bunschoten N; Zwietering MH; Rombouts FM; Abee T
    Appl Environ Microbiol; 1995 Apr; 61(4):1614-9. PubMed ID: 7747975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli detection using mTEC agar and fluorescent antibody direct viable counting on coastal recreational water samples.
    Zimmerman AM; Rebarchik DM; Flowers AR; Williams JL; Grimes DJ
    Lett Appl Microbiol; 2009 Oct; 49(4):478-83. PubMed ID: 19708885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring.
    Marose S; Lindemann C; Scheper T
    Biotechnol Prog; 1998; 14(1):63-74. PubMed ID: 9496670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid assessment of ceftazidime, ciprofloxacin, and gentamicin susceptibility in exponentially-growing E. coli cells by means of flow cytometry.
    Walberg M; Gaustad P; Steen HB
    Cytometry; 1997 Feb; 27(2):169-78. PubMed ID: 9012384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid monitoring of microbial contamination on herbal medicines by fluorescent staining method.
    Nakajima K; Nonaka K; Yamamoto K; Yamaguchi N; Tani K; Nasu M
    Lett Appl Microbiol; 2005; 40(2):128-32. PubMed ID: 15644112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent detection of beta-lactamase activity in living Escherichia coli cells via esterase supplementation.
    Nord O; Gustrin A; Nygren PA
    FEMS Microbiol Lett; 2005 Jan; 242(1):73-9. PubMed ID: 15621422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid assessment of cell viability of Lactobacillus delbrueckii subsp. bulgaricus by measurement of intracellular pH in individual cells using fluorescence ratio imaging microscopy.
    Rechinger KB; Siegumfeldt H
    Int J Food Microbiol; 2002 May; 75(1-2):53-60. PubMed ID: 11999117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometry and cell sorting for yeast viability assessment and cell selection.
    Deere D; Shen J; Vesey G; Bell P; Bissinger P; Veal D
    Yeast; 1998 Jan; 14(2):147-60. PubMed ID: 9483803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH sensing in living cells using fluorescent microspheres.
    Bradley M; Alexander L; Duncan K; Chennaoui M; Jones AC; Sánchez-Martín RM
    Bioorg Med Chem Lett; 2008 Jan; 18(1):313-7. PubMed ID: 17988866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester.
    Quah BJ; Warren HS; Parish CR
    Nat Protoc; 2007; 2(9):2049-56. PubMed ID: 17853860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of tumor necrosis factor activity by flow cytometry.
    Lévesque A; Paquet A; Pagé M
    Cytometry; 1995 Jun; 20(2):181-4. PubMed ID: 7664628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence.
    Haack MB; Eliasson A; Olsson L
    J Biotechnol; 2004 Oct; 114(1-2):199-208. PubMed ID: 15464613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry.
    Petit P; Glab N; Marie D; Kieffer H; Métézeau P
    Cytometry; 1996 Jan; 23(1):28-38. PubMed ID: 14650438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.