These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 13654354)

  • 21. Precursor activation in a pyoverdine biosynthesis.
    Menhart N; Viswanatha T
    Biochim Biophys Acta; 1990 Mar; 1038(1):47-51. PubMed ID: 2156571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. D-Threose 2,4-diphosphate inhibition of 3-phosphoglyceric acid photoreduction by a sonically ruptured spinach chloroplast system.
    PARK RB; PON NG; LOUWRIER KP; CALVIN M
    Biochim Biophys Acta; 1960 Jul; 42():27-33. PubMed ID: 13732831
    [No Abstract]   [Full Text] [Related]  

  • 23. Amino acid activating enzymes in Sarcophaga bullata.
    Allen RR; Newburgh RW
    Comp Biochem Physiol; 1966 Jan; 17(1):309-17. PubMed ID: 4287302
    [No Abstract]   [Full Text] [Related]  

  • 24. ACTION SPECTRA OF THE REDUCING AND OXIDIZING SYSTEMS IN SPINACH CHLOROPLASTS.
    LUNDEGAERDH H
    Biochim Biophys Acta; 1964 Jul; 88():37-56. PubMed ID: 14203161
    [No Abstract]   [Full Text] [Related]  

  • 25. AMINO ACID-ACTIVATED ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY MODIFIED ESCHERICHIA COLI CELLS.
    ROBERTS LE; BENSCH K; CARTER CE
    Biochim Biophys Acta; 1964 Aug; 90():291-300. PubMed ID: 14223710
    [No Abstract]   [Full Text] [Related]  

  • 26. Amino acid activation and formation of amino acyl s-RNA in bovine parotid gland.
    Takiguchi H; Furuyama S; Ogata Y; Kanno J
    J Nihon Univ Sch Dent; 1968 Dec; 10(4):140-3. PubMed ID: 4304911
    [No Abstract]   [Full Text] [Related]  

  • 27. Oligonucleotide inhibition of amino acid attachment.
    Letendre C; Michelson AM; Grunberg-Manago M
    Cold Spring Harb Symp Quant Biol; 1966; 31():71-5. PubMed ID: 4295325
    [No Abstract]   [Full Text] [Related]  

  • 28. Energy sources for photosynthetic carbon dioxide fixation.
    Vose JR; Spencer M
    Biochem Biophys Res Commun; 1967 Nov; 29(4):532-7. PubMed ID: 16496531
    [No Abstract]   [Full Text] [Related]  

  • 29. Possible "allosteric" effects controlling the kinetic behavior of amino acid-dependent pyrophosphate exchange reactions.
    Hele P; Barth PT
    Biochim Biophys Acta; 1966 Jan; 114(1):149-57. PubMed ID: 4287052
    [No Abstract]   [Full Text] [Related]  

  • 30. Metabolism of exogenous uridine 5'-triphosphate, adenosine 5'-triphosphate and pyrophosphate by alkylsulfatase-producing bacteria.
    Stewart GJ; Fitzgerald JW
    Int J Biochem; 1981; 13(9):1019-26. PubMed ID: 6271608
    [No Abstract]   [Full Text] [Related]  

  • 31. Free-energy changes of the glutaminase reaction and the hydrolysis of the terminal pyrophosphate bond of adenosine triphosphate.
    BENZINGER T; KITZINGER C; HEMS R; BURTON K
    Biochem J; 1959 Feb; 71(2):400-7. PubMed ID: 13628584
    [No Abstract]   [Full Text] [Related]  

  • 32. AMINO ACID-DEPENDENT PYROPHOSPHATE EXCHANGE DURING THE LIFE CYCLE OF THE BLOWFLY LUCILIA CUPRINA.
    HOWELLS AJ; BIRT LM
    Comp Biochem Physiol; 1964 Jan; 11():61-83. PubMed ID: 14170689
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on the enzymatic utilization of amino acyladenylates; the formation of adenosine triphosphate.
    BERG P
    J Biol Chem; 1958 Sep; 233(3):601-7. PubMed ID: 13575421
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanisms of hydrolysis of adenosine 5'-triphosphate, adenosine 5'-diphosphate, and inorganic pyrophosphate in aqueous perchloric acid.
    Hutchings GJ; Banks BE; Mruzek M; Ridd JH; Vernon CA
    Biochemistry; 1981 Sep; 20(20):5809-16. PubMed ID: 6271194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of pyrophosphate and other energy-rich phosphorous compounds under various conditions of yeast growth.
    Ermakova SA; Mansurova SE; Kalebina TS; Lobakova ES; Selyach IO; Kulaev IS
    Arch Microbiol; 1981 Feb; 128(4):394-7. PubMed ID: 6261712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stoichiometric utilization of adenosine 5'-triphosphate in nicotinate ribonucleotide synthesis from nicotinate and 5-phosphoribosyl-1-pyrophosphate.
    Honjo T; Nakamura S; Nishizuka Y; Hayaishi O
    Biochem Biophys Res Commun; 1966 Oct; 25(2):199-204. PubMed ID: 4291351
    [No Abstract]   [Full Text] [Related]  

  • 37. The interaction of 'soluble' ribonucleic acid, magnesium ions and sulphydryl groups in the control of amino acid-dependent pyrophosphate-exchange reactions.
    HELE P
    Biochem J; 1961 Nov; 81(2):329-39. PubMed ID: 13906202
    [No Abstract]   [Full Text] [Related]  

  • 38. Phenylalanyl-tRNA synthetase of baker's yeast. Modulation of adenosine triphosphate-pyrophosphate exchange by transfer ribonucleic acid.
    Fasiolo F; Remy P; Holler E
    Biochemistry; 1981 Jun; 20(13):3851-6. PubMed ID: 6268148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ADENOSINE DIPHOSPHATE-ADENOSINE TRIPHOSPHATE EXCHANGE REACTION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHKAWA K; YAMASHITA J
    J Biochem; 1964 Mar; 55():327-32. PubMed ID: 14162515
    [No Abstract]   [Full Text] [Related]  

  • 40. Pyrophosphate amplification reaction for measuring amino acid concentrations with high sensitivity using aminoacyl-tRNA synthetase from
    Nakatsuka T; Aoki H; Kida M; Kugimiya A
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1616-1623. PubMed ID: 31032741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.