These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1365436)

  • 21. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat.
    Gobert A; Rivet JM; Lejeune F; Newman-Tancredi A; Adhumeau-Auclair A; Nicolas JP; Cistarelli L; Melon C; Millan MJ
    Synapse; 2000 Jun; 36(3):205-21. PubMed ID: 10819900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local cooling of pre-frontal cortex induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo.
    Svensson TH; Tung CS
    Acta Physiol Scand; 1989 May; 136(1):135-6. PubMed ID: 2773655
    [No Abstract]   [Full Text] [Related]  

  • 23. Dopamine D-2 receptors in the ventral tegmental area mediate behavioural and electrocortical sleep of dopaminergic drugs in rats.
    Bagetta G; Priolo E; Nistico G
    Pharmacol Res Commun; 1988 Dec; 20(12):1091-2. PubMed ID: 2905475
    [No Abstract]   [Full Text] [Related]  

  • 24. Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons.
    Lokwan SJ; Overton PG; Berry MS; Clark D
    Neuroscience; 1999; 92(1):245-54. PubMed ID: 10392847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of hippocampoprefrontal cortex excitatory responses by the mesocortical DA system.
    Jay TM; Glowinski J; Thierry AM
    Neuroreport; 1995 Oct; 6(14):1845-8. PubMed ID: 8547581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiological examination of the ventral tegmental (A10) area in the rat.
    German DC; Dalsass M; Kiser RS
    Brain Res; 1980 Jan; 181(1):191-7. PubMed ID: 7350954
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of antipsychotic drugs and selective dopaminergic antagonists on dopamine-induced facilitatory activity in prelimbic cortical pyramidal neurons. An in vitro study.
    Ceci A; Brambilla A; Duranti P; Grauert M; Grippa N; Borsini F
    Neuroscience; 1999; 93(1):107-15. PubMed ID: 10430475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous firing rate of neurones in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition.
    Mora F; Sweeney KF; Rolls ET; Sanguinetti AM
    Brain Res; 1976 Nov; 116(3):516-22. PubMed ID: 974788
    [No Abstract]   [Full Text] [Related]  

  • 29. Electrophysiological assessment of dopamine receptor subtypes.
    Napier TC; Breese GR
    Adv Exp Med Biol; 1986; 204():167-88. PubMed ID: 2947427
    [No Abstract]   [Full Text] [Related]  

  • 30. Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat.
    Thierry AM; Deniau JM; Herve D; Chevalier G
    Brain Res; 1980 Nov; 201(1):210-4. PubMed ID: 7417833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation.
    Garcia-Munoz M; Young SJ; Groves PM
    Brain Res; 1991 Jun; 551(1-2):195-206. PubMed ID: 1913151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation.
    Gurden H; Tassin JP; Jay TM
    Neuroscience; 1999; 94(4):1019-27. PubMed ID: 10625044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses.
    Au-Young SM; Shen H; Yang CR
    Synapse; 1999 Dec; 34(4):245-55. PubMed ID: 10529719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.
    Yang CR; Seamans JK; Gorelova N
    Neuropsychopharmacology; 1999 Aug; 21(2):161-94. PubMed ID: 10432466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of dopaminoreactive systems of the cortex and the neostriatum in the organization of situational conditioned reflexes.
    Voilokova NL
    Neurosci Behav Physiol; 1995; 25(1):86-91. PubMed ID: 7777152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex.
    Tassin JP; Studler JM; Hervé D; Blanc G; Glowinski J
    J Neurochem; 1986 Jan; 46(1):243-8. PubMed ID: 3079614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation by stress of the habenulo-interpeduncular substance P neurons in the rat.
    Lisoprawski A; Blanc G; Glowinski J
    Neurosci Lett; 1981 Aug; 25(1):47-51. PubMed ID: 6168982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine-neurotensin interactions in mesocortical neurons. Evidence from microdialysis studies.
    Bean AJ; Roth RH
    Ann N Y Acad Sci; 1992; 668():43-53. PubMed ID: 1463288
    [No Abstract]   [Full Text] [Related]  

  • 39. Variation in the ability of neuroleptics to block the inhibitory influence of dopaminergic neurons on the activity of cells in the rat prefrontal cortex.
    Thierry AM; Le Douarin C; Penit J; Ferron A; Glowinski J
    Brain Res Bull; 1986 Feb; 16(2):155-60. PubMed ID: 2870782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential influence of dopaminergic and noradrenergic afferents on their target cells in the rat prefrontal cortex.
    Thierry AM; Godbout R; Mantz J; Pirot S; Glowinski J
    Clin Neuropharmacol; 1992; 15 Suppl 1 Pt A():139A-140A. PubMed ID: 1498784
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.