These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 13654620)

  • 1. Studies in embryonic and larval development in Amphibia. I. The embryology Eleutherodactylus ricordil, with special reference to the spinal cord.
    HUGHES A
    J Embryol Exp Morphol; 1959 Mar; 7(1):22-38. PubMed ID: 13654620
    [No Abstract]   [Full Text] [Related]  

  • 2. [On the segmental form changes of the gray substance in the spinal cord of the frog with special reference to the motor units of the anterior horn].
    NEMEC H
    Acta Anat (Basel); 1951; 13(1-2):101-18. PubMed ID: 14868275
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae).
    Jermakowicz WJ; Dorsey DA; Brown AL; Wojciechowski K; Giscombe CL; Graves BM; Summers CH; Ten Eyck GR
    J Morphol; 2004 Aug; 261(2):225-48. PubMed ID: 15216526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiments on the development of the mesial motor column in the frog.
    FLANIGAN NJ
    J Comp Neurol; 1960 Feb; 114():67-77. PubMed ID: 13823368
    [No Abstract]   [Full Text] [Related]  

  • 5. [Neurosurgical embryology. Part 7: Development of the spinal cord, the spine and the posterior fossa].
    Afonso ND; Catala M
    Neurochirurgie; 2003 Nov; 49(5):503-10. PubMed ID: 14646815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Causal analysis of the changes in the spinal cord induced by NaCNS in Bufo bufo L. embryos].
    Rossi A; Palombi F
    Arch Ital Anat Embriol; 1968; 73(2):115-32. PubMed ID: 5740923
    [No Abstract]   [Full Text] [Related]  

  • 7. An experimental study on the relationships between limb and spinal cord in the embryo of Eleutherodactylus martinicensis.
    HUGHES A
    J Embryol Exp Morphol; 1962 Dec; 10():575-601. PubMed ID: 13955530
    [No Abstract]   [Full Text] [Related]  

  • 8. Degeneration of nerve fibres within the embryonic spinal cord.
    Hughes AF; Egar M; Turner T
    Nature; 1969 Feb; 221(5180):579-81. PubMed ID: 5789317
    [No Abstract]   [Full Text] [Related]  

  • 9. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro.
    Eugenín J; von Bernhardi R; Muller KJ; Llona I
    Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Formation and embryonic histogenesis of the spinal cord in rabbit and their relation to the development of motor functions].
    KALININA EI
    Arkh Anat Gistol Embriol; 1956; 33(2):22-9. PubMed ID: 13355653
    [No Abstract]   [Full Text] [Related]  

  • 12. Embryonic development of choline acetyltransferase and nitric oxide synthase in the spinal cord of pigeons and chickens with special reference to the superficial dorsal horn.
    Necker R
    Anat Embryol (Berl); 2005 Sep; 210(2):145-54. PubMed ID: 16044318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Morphogenetic interactions between neural tubes artificially brought together in amphibian embryos].
    Belousov LV
    Dokl Akad Nauk SSSR; 1967 Oct; 176(5):1201-4. PubMed ID: 5600988
    [No Abstract]   [Full Text] [Related]  

  • 14. Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis.
    Whalley K; O'Neill P; Ferretti P
    Neuroscience; 2006 Feb; 137(3):821-32. PubMed ID: 16289582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [NADPH-diaphorase-positive nerve cells in heterotopic spinal cord transplants].
    Petrova ES; Otellin VA
    Ontogenez; 2004; 35(2):118-23. PubMed ID: 15124353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes of calretinin immunoreactivity in the lamprey spinal cord.
    Viloria A; Rodríguez-Alonso M; Costas V; Pérez-Fernández J; Pombal MA; Megías M
    Brain Res Bull; 2008 Mar; 75(2-4):428-32. PubMed ID: 18331911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium.
    Necker R
    Anat Embryol (Berl); 2005 Aug; 210(1):59-74. PubMed ID: 16034609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of cell-cell coupling in embryonic spinal cord studied via ballistic delivery of gap-junction-permeable dyes.
    Bittman KS; Panzer JA; Balice-Gordon RJ
    J Comp Neurol; 2004 Sep; 477(3):273-85. PubMed ID: 15305364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord.
    Choi JS; Lee JH; Shin YJ; Lee JY; Yun H; Chun MH; Lee MY
    Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spinal cord development].
    MALECI O
    Riv Neurol; 1954; 24(2):231-6. PubMed ID: 13195495
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.