These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 13654750)

  • 21. Variability of the electric organ discharge interval duration in resting Gymnotus carapo.
    Capurro A; Longtin A; Bagarinao E; Sato S; Macadar O; Pakdaman K
    Biol Cybern; 2001 Apr; 84(4):309-21. PubMed ID: 11324342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potassium inactivation and impedance changes during spike electrogenesis in eel electroplaques.
    Ruiz-Manresa F; Ruarte AC; Schwartz TL; Grundfest H
    J Gen Physiol; 1970 Jan; 55(1):33-47. PubMed ID: 5410488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic and non-synaptic acetylcholinesterase activity in the electroplaque of Mormyrid fishes.
    Tsuji S; Verma V
    J Neurocytol; 1977 Feb; 6(1):119-23. PubMed ID: 839248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo.
    Sierra F; Comas V; Buño W; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):1-11. PubMed ID: 15372305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroreceptive single units in the mesencephalic magnocellular nucleus of the weakly electric fish Gymnotus carapo.
    Schlegel PA
    Exp Brain Res; 1977 Aug; 29(2):201-18. PubMed ID: 199450
    [No Abstract]   [Full Text] [Related]  

  • 28. [Perfecting an apparatus allowing to measure changes of extrinsic fluorescence intensit y associated with electric excitation of electroplaque isolated from gymnotus].
    Valeur B; Patrick J; Podleski T; Monnerie L; Changeux JP
    C R Acad Hebd Seances Acad Sci D; 1970 May; 270(21):2583-6. PubMed ID: 4987648
    [No Abstract]   [Full Text] [Related]  

  • 29. [Regeneration of the electric organ in Gymnotus carapo (Pisces)].
    Baillet-Derbin C
    Arch Anat Microsc Morphol Exp; 1969; 58(4):387-92. PubMed ID: 5376800
    [No Abstract]   [Full Text] [Related]  

  • 30. [Electroorientation in weakly electric fish: a study of field distortions caused by objects in Gymnotus carapo and Gnathonemus petersii and recordings from afferent fibers in G. carapo (author's transl)].
    Schlegel P
    Biol Cybern; 1975 Nov; 20(3-4):197-212. PubMed ID: 1203343
    [No Abstract]   [Full Text] [Related]  

  • 31. ELECTRIC FISH (GYMNOTUS CARAPO) AS A TOOL FOR BIOASSAY OF METHYLPHENIDATE AND CHLORPROMAZINE.
    HOLMSTEDT B; KRIVOY W; KOEGER D
    Acta Physiol Scand; 1964; 61():177-81. PubMed ID: 14168037
    [No Abstract]   [Full Text] [Related]  

  • 32. Scanning electron microscopy of the electric tissue of Narcine brasiliensis.
    Allen TM
    Tissue Cell; 1975; 7(4):739-45. PubMed ID: 1209592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Waveform diversity of electric organ discharges: the role of electric organ auto-excitability in Gymnotus spp.
    Rodríguez-Cattáneo A; Caputi AA
    J Exp Biol; 2009 Nov; 212(Pt 21):3478-89. PubMed ID: 19837890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish.
    Grant K; Bell CC; Clausse S; Ravaille M
    J Comp Neurol; 1986 Mar; 245(4):514-30. PubMed ID: 3700711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of spike electrogenesis of Eel electroplaques with phase plane and impedance measurements.
    Morlock ML; Benamy DA; Grundfest H
    J Gen Physiol; 1968 Jul; 52(1):22-45. PubMed ID: 4316947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.
    Rodríguez-Cattáneo A; Aguilera P; Cilleruelo E; Crampton WG; Caputi AA
    J Exp Biol; 2013 Apr; 216(Pt 8):1501-15. PubMed ID: 23264494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic electrogenesis in eel electroplaques.
    Ruiz-Manresa F; Grundfest H
    J Gen Physiol; 1971 Jan; 57(1):71-92. PubMed ID: 4321726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perception of objects in weakly electric fish Gymnotus carapo as studied in recordings from rhombencephalic neurons.
    Schlegel PA
    Exp Brain Res; 1973 Nov; 18(4):340-54. PubMed ID: 4778783
    [No Abstract]   [Full Text] [Related]  

  • 39. Rapid volume expansion in the Torpedo electric organ associated with its postsynaptic potential.
    Tasaki I
    Biochem Biophys Res Commun; 1997 Apr; 233(2):305-8. PubMed ID: 9144529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Cytoembryologic aspects of evolution of specialized electric organs of fishes].
    Labas IuA; Cherdantsev VG; Glukhova EN
    Zh Obshch Biol; 2000; 61(6):616-37. PubMed ID: 11190563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.