These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1366231)

  • 21. Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase.
    Chen YH; He RQ; Liu Y; Liu Y; Xue ZG
    Biochem J; 2000 Oct; 351(Pt 1):233-40. PubMed ID: 10998366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of two extremely thermostable enzymes, phosphate acetyltransferase and acetate kinase, from the hyperthermophilic eubacterium Thermotoga maritima.
    Bock AK; Glasemacher J; Schmidt R; Schönheit P
    J Bacteriol; 1999 Mar; 181(6):1861-7. PubMed ID: 10074080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region.
    Lebbink JH; Knapp S; van der Oost J; Rice D; Ladenstein R; de Vos WM
    J Mol Biol; 1998 Jul; 280(2):287-96. PubMed ID: 9654452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization.
    Auerbach G; Ostendorp R; Prade L; Korndörfer I; Dams T; Huber R; Jaenicke R
    Structure; 1998 Jun; 6(6):769-81. PubMed ID: 9655830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing.
    Schurig H; Rutkat K; Rachel R; Jaenicke R
    Protein Sci; 1995 Feb; 4(2):228-36. PubMed ID: 7757011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten.
    Juszczak A; Aono S; Adams MW
    J Biol Chem; 1991 Jul; 266(21):13834-41. PubMed ID: 1649830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima.
    Schumann J; Wrba A; Jaenicke R; Stetter KO
    FEBS Lett; 1991 Apr; 282(1):122-6. PubMed ID: 1709115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rate enhancement of reconstitution of glyceraldehyde-3-phosphate dehydrogenase by a covalently bound coenzyme analog.
    Jaenicke R; Krebs H; Rudolph R; Woenckhaus C
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1966-9. PubMed ID: 6929530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability.
    Elkina YL; Kuravsky ML; El'darov MA; Stogov SV; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta; 2010 Dec; 1804(12):2207-12. PubMed ID: 20833277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relevance of sequence statistics for the properties of extremophilic proteins.
    Böhm G; Jaenicke R
    Int J Pept Protein Res; 1994 Jan; 43(1):97-106. PubMed ID: 7908011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A stable cold folding intermediate of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase.
    Zhang NX; Wang C
    Eur J Biochem; 1999 Sep; 264(3):1002-8. PubMed ID: 10491151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of macromolecular crowding on the unfolding and the refolding of D-glyceraldehyde-3-phosophospate dehydrogenase.
    Ren G; Lin Z; Tsou CL; Wang CC
    J Protein Chem; 2003 Jul; 22(5):431-9. PubMed ID: 14690245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An asynchronous unfolding among molecular different regions of lobster D-glyceraldehyde-3-phosphate dehydrogenase and maltotetraose-forming amylase from an Alcaligenes sp. during guanidine denaturation.
    He RQ; Zhao KY; Yan ZZ; Li M
    Biochim Biophys Acta; 1993 Jun; 1163(3):315-20. PubMed ID: 8507670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability.
    Fedøy AE; Yang N; Martinez A; Leiros HK; Steen IH
    J Mol Biol; 2007 Sep; 372(1):130-49. PubMed ID: 17632124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation precedes changes in allosteric properties and conformation of D-glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase during denaturation by guanidinium chloride.
    Jiang RF; Tsou CL
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):241-5. PubMed ID: 7945247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation and in vitro reconstitution of bovine liver uridine diphosphoglucose dehydrogenase. The paired subunit nature of the enzyme.
    Jaenicke R; Rudolph R; Feingold DS
    Biochemistry; 1986 Nov; 25(23):7283-7. PubMed ID: 3099833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant phosphoglycerate kinase from the hyperthermophilic bacterium Thermotoga maritima: catalytic, spectral and thermodynamic properties.
    Grättinger M; Dankesreiter A; Schurig H; Jaenicke R
    J Mol Biol; 1998 Jul; 280(3):525-33. PubMed ID: 9665854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational and activity changes during guanidine denaturation of D-glyceraldehyde-3-phosphate dehydrogenase.
    Xie GF; Tsou CL
    Biochim Biophys Acta; 1987 Jan; 911(1):19-24. PubMed ID: 3790596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of reactivation and refolding of glyceraldehyde-3-phosphate dehydrogenase from yeast after denaturation and dissociation.
    Rudolph R; Heider I; Jaenicke R
    Eur J Biochem; 1977 Dec; 81(3):563-70. PubMed ID: 202463
    [No Abstract]   [Full Text] [Related]  

  • 40. Comparative analysis of pyruvate kinases from the hyperthermophilic archaea Archaeoglobus fulgidus, Aeropyrum pernix, and Pyrobaculum aerophilum and the hyperthermophilic bacterium Thermotoga maritima: unusual regulatory properties in hyperthermophilic archaea.
    Johnsen U; Hansen T; Schonheit P
    J Biol Chem; 2003 Jul; 278(28):25417-27. PubMed ID: 12654928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.