BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 1366395)

  • 21. Influence of phytogenic surfactants (quillaya saponin and soya lecithin) on bio-elimination of phenanthrene and fluoranthene by three bacteria.
    Soeder CJ; Papaderos A; Kleespies M; Kneifel H; Haegel FH; Webb L
    Appl Microbiol Biotechnol; 1996 Jan; 44(5):654-9. PubMed ID: 8703434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.
    Song M; Jiang L; Zhang D; Luo C; Wang Y; Yu Z; Yin H; Zhang G
    J Hazard Mater; 2016 May; 308():50-7. PubMed ID: 26808242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads.
    Stringfellow WT; Aitken MD
    Appl Environ Microbiol; 1995 Jan; 61(1):357-62. PubMed ID: 7887615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Use of Pseudomonas and Achromobacter species bacteria--degraders of surface-active agents--for detection and destruction of polycyclic aromatic hydrocarbons].
    Ivashchenko GV; Semenchuk IN
    Ukr Biokhim Zh (1999); 2001; 73(1):148-52. PubMed ID: 11599420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons].
    Soroka IaM; Samoĭlenko LS; Gvozdiak PI
    Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB126 in chemostat cultures.
    Herwijnen R; Sande BF; Wielen FW; Springael D; Govers HA; Parsons JR
    FEMS Microbiol Ecol; 2003 Oct; 46(1):105-11. PubMed ID: 19719587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced arsenic uptake and polycyclic aromatic hydrocarbon (PAH)-dissipation using Pteris vittata L. and a PAH-degrading bacterium.
    Sun L; Zhu G; Liao X
    Sci Total Environ; 2018 May; 624():683-690. PubMed ID: 29272837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial communities and enzyme activities of PAHs polluted soils.
    Andreoni V; Cavalca L; Rao MA; Nocerino G; Bernasconi S; Dell'Amico E; Colombo M; Gianfreda L
    Chemosphere; 2004 Nov; 57(5):401-12. PubMed ID: 15331267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dearomatization of diesel oil using Pseudomonas sp.
    Khan S; Gupta S; Gupta N
    Biotechnol Lett; 2018 Oct; 40(9-10):1329-1333. PubMed ID: 29802569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol.
    Samanta SK; Chakraborti AK; Jain RK
    Appl Microbiol Biotechnol; 1999 Dec; 53(1):98-107. PubMed ID: 10645629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PAH degradation capacity of soil microbial communities--does it depend on PAH exposure?
    Johnsen AR; Karlson U
    Microb Ecol; 2005 Nov; 50(4):488-95. PubMed ID: 16328660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations].
    Anokhina TO; Kochetkov VV; Zelenkova NF; Balakshina VV; Boronin AM
    Prikl Biokhim Mikrobiol; 2004; 40(6):654-8. PubMed ID: 15609856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
    Grifoll M; Selifonov SA; Gatlin CV; Chapman PJ
    Appl Environ Microbiol; 1995 Oct; 61(10):3711-23. PubMed ID: 7487007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.
    Bahr A; Fischer A; Vogt C; Bombach P
    Water Res; 2015 Feb; 69():100-109. PubMed ID: 25437342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China.
    Zhao HP; Wu QS; Wang L; Zhao XT; Gao HW
    J Hazard Mater; 2009 May; 164(2-3):863-9. PubMed ID: 18930349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation.
    Wang S; Nomura N; Nakajima T; Uchiyama H
    J Biosci Bioeng; 2012 May; 113(5):624-30. PubMed ID: 22305589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons.
    Lotfabad SK; Gray MR
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.
    Sawulski P; Clipson N; Doyle E
    Biodegradation; 2014 Nov; 25(6):835-47. PubMed ID: 25095739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth.
    Rehmann K; Hertkorn N; Kettrup AA
    Microbiology (Reading); 2001 Oct; 147(Pt 10):2783-2794. PubMed ID: 11577157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of soil-applied polycyclic aromatic hydrocarbons by sulfate-reducing bacterial consortium.
    Kumar M; Wu PC; Tsai JC; Lin JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jan; 44(1):12-20. PubMed ID: 19085590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.