BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1366472)

  • 21. Peptide synthesis in organic solvents with an immobilized enzyme.
    Nakanisi K; Nagayasu T
    Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide bond synthesis catalyzed by thermolysin.
    Oka T; Morihara K
    J Biochem; 1980 Sep; 88(3):807-13. PubMed ID: 7419523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of molecularly imprinted polymers in a biotransformation process.
    Ye L; Ramström O; Ansell RJ; Månsson MO; Mosbach K
    Biotechnol Bioeng; 1999 Sep; 64(6):650-5. PubMed ID: 10417213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous production of N-(benzyloxycarbonyl)-L-glycyl-L-phenylalanine methyl ester utilizing extractive reaction in aqueous/organic biphasic medium.
    Murakami Y; Oda T; Chiba K; Hirata A
    Prep Biochem Biotechnol; 2000 Feb; 30(1):15-22. PubMed ID: 10701448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis: from analytical to preparative scale.
    Eichhorn U; Bommarius AS; Drauz K; Jakubke HD
    J Pept Sci; 1997; 3(4):245-51. PubMed ID: 9262642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilized thermolysin for highly efficient production of low-molecular-weight protamine--an attractive cell-penetrating peptide for macromolecular drug delivery applications.
    David AE; Gong J; Chertok B; Domszy RC; Moon C; Park YS; Wang NS; Yang AJ; Yang VC
    J Biomed Mater Res A; 2012 Jan; 100(1):211-9. PubMed ID: 22042599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of normal and their branched alcohols with structurally minimal variation on kinetic parameters in thermolysin-catalyzed peptide hydrolysis and synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine and its methyl ester.
    Inagaki T; Tadasa K; Kayahara H
    Biosci Biotechnol Biochem; 1995 Mar; 59(3):535-7. PubMed ID: 7766199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of metalloendopeptidases by 2-mercaptoacetyl-dipeptides.
    Blumberg S; Tauber Z
    Eur J Biochem; 1983 Oct; 136(1):151-4. PubMed ID: 6413206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavior of enzyme activity in immobilized proteases.
    Kumakura M; Kaetsu I
    Int J Biochem; 1984; 16(11):1159-61. PubMed ID: 6526133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transesterification of phenylalanine by means of chymotrypsin in a continuous fixed bed reactor.
    Moresoli C; Flaschel E; Renken A
    Enzyme Microb Technol; 1991 Sep; 13(9):703-7. PubMed ID: 1367887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic synthesis of the precursor of Leu-enkephalin in water-immiscible organic solvent systems.
    Kimura Y; Nakanishi K; Matsuno R
    Enzyme Microb Technol; 1990 Apr; 12(4):272-80. PubMed ID: 1366523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering, expression, purification, and production of recombinant thermolysin.
    Inouye K; Kusano M; Hashida Y; Minoda M; Yasukawa K
    Biotechnol Annu Rev; 2007; 13():43-64. PubMed ID: 17875473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.
    Kumar S; Pahujani S; Ola RP; Kanwar SS; Gupta R
    Acta Microbiol Immunol Hung; 2006 Jun; 53(2):219-31. PubMed ID: 16956131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel kinetic analysis of enzymatic dipeptide synthesis: effect of pH and substrates on thermolysin catalysis.
    Murakami Y; Chiba K; Oda T; Hirata A
    Biotechnol Bioeng; 2001 Sep; 74(5):406-15. PubMed ID: 11427942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes.
    Pan-Hou H; Suda Y; Ohe Y; Sumi M; Yoshioka M
    Brain Res; 1990 Jun; 520(1-2):351-3. PubMed ID: 1976410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the activity and stability of thermolysin by site-directed mutagenesis.
    Yasukawa K; Inouye K
    Biochim Biophys Acta; 2007 Oct; 1774(10):1281-8. PubMed ID: 17869197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.
    Duerfahrt T; Doekel S; Sonke T; Quaedflieg PJ; Marahiel MA
    Eur J Biochem; 2003 Nov; 270(22):4555-63. PubMed ID: 14622284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A metabolite of aspartame inhibits angiotensin converting enzyme.
    Grobelny D; Galardy RE
    Biochem Biophys Res Commun; 1985 Apr; 128(2):960-4. PubMed ID: 2986632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.
    Chen YY; Lo HF; Wang TF; Lin MG; Lin LL; Chi MC
    Enzyme Microb Technol; 2015; 75-76():18-24. PubMed ID: 26047911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption.
    Trusek-Holownia A; Noworyta A
    J Biotechnol; 2007 May; 130(1):47-56. PubMed ID: 17434222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.