These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 13664839)
1. The behavioral effects of destructive lesions of the periaqueductal gray matter in adult cats. SKULTETY FM J Comp Neurol; 1958 Dec; 110(3):337-65. PubMed ID: 13664839 [No Abstract] [Full Text] [Related]
2. Commissural connections of the cat periaqueductal gray matter studied with anterograde and retrograde tract-tracing techniques. Barbaresi P; Minelli A; Gazzanelli G; Malatesta M Neuroscience; 1994 Jun; 60(3):781-99. PubMed ID: 7523986 [TBL] [Abstract][Full Text] [Related]
3. Experimental mutism following electrolytic lesions of the periaqueductal gray matter in dogs. SKULTETY FM Trans Am Neurol Assoc; 1961; 86():245-6. PubMed ID: 13913742 [No Abstract] [Full Text] [Related]
4. A blood pressure lowering effect of lesions of the caudal periaqueductal gray: relationship to basal pressure. Ward DG; Darlington DN Brain Res; 1987 Oct; 423(1-2):373-7. PubMed ID: 3676815 [TBL] [Abstract][Full Text] [Related]
5. Glutamate-positive neurons and terminals in the cat periaqueductal gray matter (PAG): a light and electron microscopic immunocytochemical study. Barbaresi P; Gazzanelli G; Malatesta M J Comp Neurol; 1997 Jul; 383(3):381-96. PubMed ID: 9205048 [TBL] [Abstract][Full Text] [Related]
6. Short intrinsic circuit in the periaqueductal gray matter of the cat. Tredici G; Bianchi R; Gioia M Neurosci Lett; 1983 Aug; 39(2):131-6. PubMed ID: 6633943 [TBL] [Abstract][Full Text] [Related]
7. Relation to periaqueductal gray matter to stomach and bladder motility. SKULTETY FM Neurology; 1959 Mar; 9(3):190-8. PubMed ID: 13632880 [No Abstract] [Full Text] [Related]
8. Role of periaqueductal gray matter in hypertension in spontaneously hypertensive rats. Schenberg LC; Brandão CA; Vasquez EC Hypertension; 1995 Dec; 26(6 Pt 2):1125-8. PubMed ID: 7498981 [TBL] [Abstract][Full Text] [Related]
9. Cytoarchitecture of the periaqueductal gray matter in the cat: a quantitative Nissl study. Gioia M; Bianchi R; Tredici G Acta Anat (Basel); 1984; 119(2):113-7. PubMed ID: 6730898 [TBL] [Abstract][Full Text] [Related]
10. Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats. Pourrahimi AM; Abbasnejad M; Esmaeili-Mahani S; Kooshki R; Raoof M Neuropeptides; 2019 Feb; 73():25-33. PubMed ID: 30587409 [TBL] [Abstract][Full Text] [Related]
11. Demonstration of a reciprocal connection between the periaqueductal gray matter and the reticular nucleus of the thalamus. Rinvik E; Wiberg M Anat Embryol (Berl); 1990; 181(6):577-84. PubMed ID: 2396757 [TBL] [Abstract][Full Text] [Related]
12. [Corticofugal projections to the periaqueductal gray matter in the cat midbrain]. Bragin EO; Eliseeva ZV; Vasilenko GF; Meĭzerov EE; Chuvin BT Biull Eksp Biol Med; 1984 Jun; 97(6):737-40. PubMed ID: 6743817 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro. Stezhka VV; Lovick TA Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199 [TBL] [Abstract][Full Text] [Related]
14. Blockade of mu- and activation of kappa-opioid receptors in the dorsal periaqueductal gray matter produce defensive behavior in rats tested in the elevated plus-maze. Nobre MJ; Ribeiro dos Santos N; Aguiar MS; Brandão ML Eur J Pharmacol; 2000 Sep; 404(1-2):145-51. PubMed ID: 10980273 [TBL] [Abstract][Full Text] [Related]
15. Phasic but not tonic REM-selective discharge of periaqueductal gray neurons in freely behaving animals: relevance to postulates of GABAergic inhibition of monoaminergic neurons. Thakkar MM; Strecker RE; McCarley RW Brain Res; 2002 Aug; 945(2):276-80. PubMed ID: 12126890 [TBL] [Abstract][Full Text] [Related]
16. [Inhibition of the evoked potentials of the somatosensory cortex by stimulation of the central gray matter of the midbrain in cats]. Garkavenko VV; Gura EV Fiziol Zh (1978); 1988; 34(5):91-5. PubMed ID: 3203783 [No Abstract] [Full Text] [Related]
17. Distinct regions of periaqueductal gray (PAG) are involved in freezing behavior in hooded PVG rats on the cat-freezing test apparatus. Farook JM; Wang Q; Moochhala SM; Zhu ZY; Lee L; Wong PT Neurosci Lett; 2004 Jan; 354(2):139-42. PubMed ID: 14698458 [TBL] [Abstract][Full Text] [Related]
18. Behavioral effects of electrolytic lesions of the periaqueductal gray matter in adult cats. SKULTETY FM; MEYERS R; BROWN G Trans Am Neurol Assoc; 1954; 13(79th Meeting):121-6. PubMed ID: 13238331 [No Abstract] [Full Text] [Related]
19. Serotonergic transmission in the periaqueductal gray matter in relation to aversive behaviour: morphological evidence for direct modulatory effects on identified output neurons. Lovick TA; Parry DM; Stezhka VV; Lumb BM Neuroscience; 2000; 95(3):763-72. PubMed ID: 10670443 [TBL] [Abstract][Full Text] [Related]
20. Influences of locus ceruleus, raphe dorsalis, and periaqueductal gray matter on somatosensory-recipient thalamic nuclei. Schieppati M; Gritti I Exp Neurol; 1983 Dec; 82(3):698-705. PubMed ID: 6653718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]