BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1366497)

  • 1. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.
    Witholt B; de Smet MJ; Kingma J; van Beilen JB; Kok M; Lageveen RG; Eggink G
    Trends Biotechnol; 1990 Feb; 8(2):46-52. PubMed ID: 1366497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
    Schwartz RD
    Appl Microbiol; 1973 Apr; 25(4):574-7. PubMed ID: 4699216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.
    Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L
    Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of synthons in two-liquid-phase media.
    Wubbolts MG; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1996 Oct; 52(2):301-8. PubMed ID: 18629897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of alkane oxidation in Pseudomonas putida.
    Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M
    J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations.
    Benson S; Fennewald M; Shapiro J; Huettner C
    J Bacteriol; 1977 Nov; 132(2):614-21. PubMed ID: 410794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway.
    Yuste L; Canosa I; Rojo F
    J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product repression of alkane monooxygenase expression in Pseudomonas butanovora.
    Doughty DM; Sayavedra-Soto LA; Arp DJ; Bottomley PJ
    J Bacteriol; 2006 Apr; 188(7):2586-92. PubMed ID: 16547046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans.
    van Beilen JB; Eggink G; Enequist H; Bos R; Witholt B
    Mol Microbiol; 1992 Nov; 6(21):3121-36. PubMed ID: 1453953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of hydrophobic compounds in a continuous closed-gas-loop bioreactor: feasibility assessment and epoxide production.
    Steinig GH; Livingston AG; Stuckey DC
    Biotechnol Bioeng; 2000 Dec; 70(5):553-63. PubMed ID: 11042552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8.
    Hamamura N; Yeager CM; Arp DJ
    Appl Environ Microbiol; 2001 Nov; 67(11):4992-8. PubMed ID: 11679317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs).
    Williams SC; Forsberg AP; Lee J; Vizcarra CL; Lopatkin AJ; Austin RN
    J Inorg Biochem; 2021 Jun; 219():111409. PubMed ID: 33752122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.