These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1366521)

  • 21. Orientation of the hemes of high potential cytochromes relative to photosynthetic membranes, as shown by the linear dichroism of oriented preparations.
    Vermeglio A; Breton J; Barouch Y; Clayton RK
    Biochim Biophys Acta; 1980 Dec; 593(2):299-311. PubMed ID: 7236637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis.
    Michel H
    J Mol Biol; 1982 Jul; 158(3):567-72. PubMed ID: 7131557
    [No Abstract]   [Full Text] [Related]  

  • 23. Redox properties of an H-subunit-depleted photosynthetic reaction center from Rhodopseudomonas viridis.
    Hara M; Kaneko T; Nakamura C; Asada Y; Miyake J
    Biochim Biophys Acta; 1998 Mar; 1363(3):199-208. PubMed ID: 9518612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topography of reaction center subunits in the membrane of the photosynthetic bacterium, rhodopseudomonas sphaeroides.
    Valkirs GE; Feher G
    J Cell Biol; 1982 Oct; 95(1):179-88. PubMed ID: 6754742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium alkyl ether sulfate preparative electrophoresis for the preparation of reaction centers without H-subunit from Rhodopseudomonas viridis.
    Miyake J; Hara M; Asada Y; Morimoto Y; Shirai M
    Electrophoresis; 1998 Feb; 19(2):319-22. PubMed ID: 9548298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas spheroides.
    Clayton RK; Clayton BJ
    Biochim Biophys Acta; 1972 Dec; 283(3):492-504. PubMed ID: 4119439
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides.
    Tehrani A; Prince RC; Beatty JT
    Biochemistry; 2003 Aug; 42(30):8919-28. PubMed ID: 12885224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic interactions at the donor side of the photosynthetic reaction center of Rhodopseudomonas viridis.
    Baymann F; Rappaport F
    Biochemistry; 1998 Nov; 37(44):15320-6. PubMed ID: 9799492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Rhodopseudomonas viridis photosynthetic membrane: arrangement in situ.
    Miller KR; Jacob JS
    Arch Microbiol; 1985 Sep; 142(4):333-9. PubMed ID: 4062481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro biosynthesis and membrane association of photosynthetic reaction center subunits from Rhodopseudomonas sphaeroides.
    Hoger JH; Chory J; Kaplan S
    J Bacteriol; 1986 Mar; 165(3):942-50. PubMed ID: 3512531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of a bacterial photosynthetic membrane. Isolation, polypeptide composition, and selective proteolysis.
    Jacob JS; Miller KR
    Arch Biochem Biophys; 1983 May; 223(1):282-90. PubMed ID: 6859862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Carotenoids of Industrial Interest in the Photosynthetic Bacterium Rhodopseudomonas palustris : Bioengineering and Growth Conditions.
    Giraud E; Hannibal L; Chaintreuil C; Fardoux J; Verméglio A
    Methods Mol Biol; 2018; 1852():211-220. PubMed ID: 30109633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic reaction centers in artificial membranes: estimating protein dimensions by freeze-fracture and freeze-etching.
    Miller KR; Jacob JS
    J Submicrosc Cytol; 1984 Oct; 16(4):619-23. PubMed ID: 6389898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic membranes.
    Dierstein R; Drews G
    J Bacteriol; 1986 Oct; 168(1):167-72. PubMed ID: 3531166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical cross-linking studies of the light-harvesting pigment-protein complex B800-850 of Rhodopseudomonas capsulata.
    Peters J; Drews G
    Eur J Cell Biol; 1983 Jan; 29(2):115-20. PubMed ID: 6339241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.
    Niederman RA
    Biochim Biophys Acta; 2016 Mar; 1857(3):232-46. PubMed ID: 26519773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantum mechanical analysis of the light-harvesting complex 2 (LH2) from purple photosynthetic bacteria: insights into the electrostatic effects of transmembrane helices.
    Pichierri F
    Biosystems; 2011 Feb; 103(2):132-7. PubMed ID: 20837095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthetic electron transport in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina measured using PAM fluorometry.
    Ritchie RJ; Runcie JW
    Photochem Photobiol; 2013; 89(2):370-83. PubMed ID: 22978665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the contribution from different energy-linked reactions to the function of a membrane potential in photosynthetic bacteria.
    Nore BF; Sakai Y; Baltscheffsky M
    Biochim Biophys Acta; 1990 Feb; 1015(2):189-94. PubMed ID: 23387095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.