These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1366576)

  • 1. NADH production from NAD+ with a formate dehydrogenase system involving immobilized cells of a methylotrophic Arthrobacter strain.
    Nath PK; Izumi Y; Yamada H
    Enzyme Microb Technol; 1990 Jan; 12(1):28-32. PubMed ID: 1366576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Kinetics of the NADH regenerating system using bacterial formate dehydrogenase].
    Egorov AM; Osipov AP; Pozharskiĭ SB; Iavarkovskaia LL
    Biokhimiia; 1981 Feb; 46(2):361-7. PubMed ID: 7248390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetics of NAD-dependent formate dehydrogenase from the methanol-utilizing yeast Candida methylica].
    Zaks AM; Avilova TV; Egorova OA; Popov VO; Egorov AM
    Biokhimiia; 1982 Apr; 47(4):546-51. PubMed ID: 7082688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel 3-Phytosterone-9α-Hydroxylase Oxygenation Component and Its Application in Bioconversion of 4-Androstene-3,17-Dione to 9α-Hydroxy-4-Androstene-3,17-Dione Coupling with A NADH Regeneration Formate Dehydrogenase.
    Zhang X; Zhu M; Han R; Zhao Y; Chen K; Qian K; Shao M; Yang T; Xu M; Xu J; Rao Z
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of liposome-coupled NADH and evaluation of its affinity toward formate dehydrogenase based on deactivation kinetics of the enzyme.
    Yoshimoto M; Kunihiro N; Tsubomura N; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Sep; 109():40-4. PubMed ID: 23603041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp. 101 cells grown on a molybdenum-containing medium.
    Karzanov VV; Bogatsky YuA ; Tishkov VI; Egorov AM
    FEMS Microbiol Lett; 1989 Jul; 51(1):197-200. PubMed ID: 2777065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD-dependent formate dehydrogenase from methylotrophic bacterium, strain 1. Purification and characterization.
    Egorov AM; Avilova TV; Dikov MM; Popov VO; Rodionov YV; Berezin IV
    Eur J Biochem; 1979 Sep; 99(3):569-76. PubMed ID: 227687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic production of D-3-phenyllactic acid by Pediococcus pentosaceus D-lactate dehydrogenase with NADH regeneration by Ogataea parapolymorpha formate dehydrogenase.
    Yu S; Zhu L; Zhou C; An T; Jiang B; Mu W
    Biotechnol Lett; 2014 Mar; 36(3):627-31. PubMed ID: 24249102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Two ways of formate oxidation in methylotrophic bacteria].
    Rodionov IuV; Zakharova EV
    Biokhimiia; 1980 May; 45(5):854-63. PubMed ID: 6246983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.
    Liu F; Banta S; Chen W
    Chem Commun (Camb); 2013 May; 49(36):3766-8. PubMed ID: 23535691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NADH Availability on 3-Phenyllactic Acid Production by Lactobacillus plantarum Expressing Formate Dehydrogenase.
    Li M; Meng X; Sun Z; Zhu C; Ji H
    Curr Microbiol; 2019 Jun; 76(6):706-712. PubMed ID: 30963198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coimmobilized system of NAD with dehydrogenases.
    Yamazaki Y; Maeda H
    Methods Enzymol; 1987; 136():21-34. PubMed ID: 3683193
    [No Abstract]   [Full Text] [Related]  

  • 15. A new NAD+-dependent opine dehydrogenase from Arthrobacter sp. strain 1C.
    Asano Y; Yamaguchi K; Kondo K
    J Bacteriol; 1989 Aug; 171(8):4466-71. PubMed ID: 2753861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic model for prediction of formate dehydrogenase kinetics under industrially relevant conditions.
    Schmidt T; Michalik C; Zavrel M; Spiess A; Marquardt W; Ansorge-Schumacher MB
    Biotechnol Prog; 2010; 26(1):73-8. PubMed ID: 19830796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of hydrogen productivity by introduction of NADH regeneration pathway in Clostridium paraputrificum.
    Lu Y; Zhang C; Zhao H; Xing XH
    Appl Biochem Biotechnol; 2012 Jun; 167(4):732-42. PubMed ID: 22592776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobas Mira S endpoint enzymatic assay for plasma formate.
    Blomme B; Lheureux P; Gerlo E; Maes V
    J Anal Toxicol; 2001 Mar; 25(2):77-80. PubMed ID: 11300510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of D-methionine into L-methionine in the cascade of four enzymes.
    Findrik Z; Vasić-Racki D
    Biotechnol Bioeng; 2007 Dec; 98(5):956-67. PubMed ID: 17534960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase.
    Hermes JD; Morrical SW; O'Leary MH; Cleland WW
    Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.