These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1366632)

  • 1. Reductive biotransformations of organic compounds by cells or enzymes of yeast.
    Ward OP; Young CS
    Enzyme Microb Technol; 1990 Jul; 12(7):482-93. PubMed ID: 1366632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.
    Jeon H; Durairaj P; Lee D; Ahsan MM; Yun H
    J Microbiol Biotechnol; 2016 Dec; 26(12):2076-2086. PubMed ID: 27666994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids.
    Khor GK; Uzir MH
    Yeast; 2011 Feb; 28(2):93-107. PubMed ID: 20939023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-reductases in the yeast Saccharomyces cerevisiae.
    Lesuisse E; Crichton RR; Labbe P
    Biochim Biophys Acta; 1990 Apr; 1038(2):253-9. PubMed ID: 2184897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the individual reductive steps catalyzed by beta-hydroxy-beta-methylglutaryl-coenzyme A reductase obtained from yeast.
    Qureshi N; Dugan RE; Cleland WW; Porter JW
    Biochemistry; 1976 Sep; 15(19):4191-07. PubMed ID: 9133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-carbon double-bond reductases in nature.
    Huang M; Hu H; Ma L; Zhou Q; Yu L; Zeng S
    Drug Metab Rev; 2014 Aug; 46(3):362-78. PubMed ID: 24750117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stereoselective reagents for beta-keto ester reductions by genetic engineering of baker's yeast.
    Rodríguez S; Kayser MM; Stewart JD
    J Am Chem Soc; 2001 Feb; 123(8):1547-55. PubMed ID: 11456752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and application of a bi-functional redox biocatalyst through covalent co-immobilization of ene-reductase and glucose dehydrogenase.
    Nagy F; Gyujto I; Tasnádi G; Barna B; Balogh-Weiser D; Faber K; Poppe L; Hall M
    J Biotechnol; 2020 Nov; 323():246-253. PubMed ID: 32891641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis.
    Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D
    Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baker's yeast. Some biochemical aspects and their influence in biotransformations.
    Pereira Rde S
    Appl Biochem Biotechnol; 1995 Nov; 55(2):123-32. PubMed ID: 7495331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae.
    Katz M; Frejd T; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2003 Dec; 84(5):573-82. PubMed ID: 14574691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines.
    Swizdor A; Panek A; Milecka-Tronina N; Kołek T
    Int J Mol Sci; 2012 Dec; 13(12):16514-43. PubMed ID: 23443116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase.
    Tischler D; Gädke E; Eggerichs D; Gomez Baraibar A; Mügge C; Scholtissek A; Paul CE
    Chembiochem; 2020 Apr; 21(8):1217-1225. PubMed ID: 31692216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient bioreduction of bicyclo[2.2.2]octane-2,5-dione and bicyclo[2.2.2]oct-7-ene-2,5-dione by genetically engineered Saccharomyces cerevisiae.
    Friberg A; Johanson T; Franzén J; Gorwa-Grauslund MF; Frejd T
    Org Biomol Chem; 2006 Jun; 4(11):2304-12. PubMed ID: 16729141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion.
    Knudsen JD; Hägglöf C; Weber N; Carlquist M
    Microb Cell Fact; 2016 Feb; 15():37. PubMed ID: 26879378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of beta-keto ester by Saccharomyces cerevisiae.
    Lin J; Liu Q; Su E; Wei D; Yang S
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):831-9. PubMed ID: 18679677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in protein structure and similarities in catalytic function of two L-stereoselective carbonyl reductases from bakers' yeast.
    Nakajima N; Ishihara K; Kondo S; Tsuboi S; Utaka M; Nakamura K
    Biosci Biotechnol Biochem; 1994 Nov; 58(11):2080-1. PubMed ID: 7765599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.