These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 13668540)

  • 1. Molecular structural factors in competitive inhibition of sugar transport.
    LEFEVRE PG
    Science; 1959 Jul; 130(3367):104-5. PubMed ID: 13668540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by phloretin and phlorizin derivatives of sugar transport in different cells.
    Kotyk A; Kolínská J; Veres K; Szammer J
    Biochem Z; 1965 Jul; 342(2):129-38. PubMed ID: 5867141
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol.
    Forsling ML; Widdas WF
    J Physiol; 1968 Feb; 194(2):545-54. PubMed ID: 5639367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate and affinity in human red blood cell sugar transport.
    LEFEVRE PG
    Am J Physiol; 1962 Aug; 203():286-90. PubMed ID: 14463665
    [No Abstract]   [Full Text] [Related]  

  • 5. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Biochemistry; 1980 Nov; 19(23):5417-20. PubMed ID: 7192569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport.
    LEFEVRE PG; MARSHALL JK
    J Biol Chem; 1959 Nov; 234():3022-6. PubMed ID: 14415272
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of phloretin and synthetic estrogens on beta-galactoside transport in Escherichia coli.
    Batt ER; Schachter D
    Biochim Biophys Acta; 1971 Mar; 233(1):189-200. PubMed ID: 4931395
    [No Abstract]   [Full Text] [Related]  

  • 8. [On various properties of the monosaccharide transport system in erythrocytes of newborn and adult rabbits].
    Häcker R; von Rohden L; Augustin HW
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(2):252-8. PubMed ID: 4178875
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of chlorpromazine on monosaccharide transport in fish erythrocytes.
    Bolis L; Canciglia P; Trischitta F
    Pharmacol Res Commun; 1982 Apr; 14(4):321-6. PubMed ID: 7100231
    [No Abstract]   [Full Text] [Related]  

  • 10. Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system.
    Baldwin SA; Baldwin JM; Gorga FR; Lienhard GE
    Biochim Biophys Acta; 1979 Mar; 552(1):183-8. PubMed ID: 435493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the inhibition of stromal adenosine-triphosphatase and inhibition of sugar permeability in erythrocytes.
    LARIS PC; EWERS A; NOVINGER G
    J Cell Comp Physiol; 1962 Apr; 59():145-54. PubMed ID: 14462428
    [No Abstract]   [Full Text] [Related]  

  • 12. The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated.
    Gorga FR; Baldwin SA; Lienhard GE
    Biochem Biophys Res Commun; 1979 Dec; 91(3):955-61. PubMed ID: 118753
    [No Abstract]   [Full Text] [Related]  

  • 13. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase.
    Fannin FF; Evans JO; Gibbs EM; Diedrich DF
    Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Identification of sedoheptulose-7-phosphate among the products of metabolism of ribose-5-phosphate in human erythrocytes].
    MARINELLO E
    Arch Sci Biol (Bologna); 1958; 42(4):320-33. PubMed ID: 13596133
    [No Abstract]   [Full Text] [Related]  

  • 15. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sugar transport in the pigeon red blood cell.
    Simons TJ
    J Physiol; 1983 May; 338():477-99. PubMed ID: 6410059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHOSPHOLIPID-SUGAR COMPLEXES IN RELATION TO CELL MEMBRANE MONOSACCHARIDE TRANSPORT.
    LEFEVRE PG; HABICH KI; HESS HS; HUDSON MR
    Science; 1964 Feb; 143(3609):955-7. PubMed ID: 14090144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of phloretin with the anion transport protein of the red blood cell membrane.
    Forman SA; Verkman AS; Dix JA; Solomon AK
    Biochim Biophys Acta; 1982 Aug; 689(3):531-8. PubMed ID: 7126563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system.
    Miller DM
    Biophys J; 1971 Nov; 11(11):915-23. PubMed ID: 5113002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.