These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1366857)

  • 1. Host cell control of heterologous protein production in Saccharomyces cerevisiae.
    Das RC; Campbell DA
    Bioprocess Technol; 1990; 8():311-42. PubMed ID: 1366857
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation.
    Alberghina L; Porro D; Martegani E; Ranzi BM
    Biotechnol Appl Biochem; 1991 Aug; 14(1):82-92. PubMed ID: 1910586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New system for positive selection of recombinant plasmids and dual expression in yeast and bacteria based on the restriction ribonuclease RegB.
    Saïda F; Uzan M; Lallemand JY; Bontems F
    Biotechnol Prog; 2003; 19(3):727-33. PubMed ID: 12790631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.
    Iborra A; Sentandreu R; Gozalbo D
    Microbiologia; 1996 Sep; 12(3):443-8. PubMed ID: 8897426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput expression in microplate format in Saccharomyces cerevisiae.
    Holz C; Lang C
    Methods Mol Biol; 2004; 267():267-76. PubMed ID: 15269430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible expression cassettes in yeast: GAL4.
    Mylin LM; Hopper JE
    Methods Mol Biol; 1997; 62():131-48. PubMed ID: 9108518
    [No Abstract]   [Full Text] [Related]  

  • 7. Inducible expression cassettes in yeast: ADH2.
    Price VL
    Methods Mol Biol; 1997; 62():149-57. PubMed ID: 9108519
    [No Abstract]   [Full Text] [Related]  

  • 8. Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways.
    Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM
    J Biotechnol; 2004 Apr; 109(1-2):159-67. PubMed ID: 15063624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum.
    Liu Y; Yang Q
    FEMS Microbiol Lett; 2007 Dec; 277(2):173-81. PubMed ID: 18031337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous gene expression in yeast.
    Byrne LJ; O'Callaghan KJ; Tuite MF
    Methods Mol Biol; 2005; 308():51-64. PubMed ID: 16082025
    [No Abstract]   [Full Text] [Related]  

  • 11. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldeyhyde-3-phosphate dehydrogenase promoter of Pichia pastoris.
    Vellanki RN; Komaravelli N; Tatineni R; Mangamoori LN
    Biotechnol Lett; 2007 Feb; 29(2):313-8. PubMed ID: 17136304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uses for GAL4 expression in mammalian cells.
    Sadowski I
    Genet Eng (N Y); 1995; 17():119-48. PubMed ID: 7779510
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulated transcriptional systems for the production of proteins in yeast: regulation by carbon source.
    Shuster JR
    Biotechnology; 1989; 13():83-108. PubMed ID: 2679935
    [No Abstract]   [Full Text] [Related]  

  • 15. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins.
    Sil AK; Xin P; Hopper JE
    Protein Expr Purif; 2000 Mar; 18(2):202-12. PubMed ID: 10686151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic stability of protein expression systems in yeast.
    Bussineau CM; Shuster JR
    Dev Biol Stand; 1994; 83():13-9. PubMed ID: 7883086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p.
    Sasaki H; Kishimoto T; Mizuno T; Shinzato T; Uemura H
    Yeast; 2005 Mar; 22(4):305-19. PubMed ID: 15789351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous gene expression in yeast.
    Hinnen A; Meyhack B; Heim J
    Biotechnology; 1989; 13():193-213. PubMed ID: 2679925
    [No Abstract]   [Full Text] [Related]  

  • 19. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate.
    Bentley NJ; Fitch IT; Tuite MF
    Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.