BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1366878)

  • 1. Enzymatic cell lysis for product release.
    Asenjo JA; Andrews BA
    Bioprocess Technol; 1990; 9():143-75. PubMed ID: 1366878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of enzyme systems for selective product release from microbial cells; isolation of a recombinant protein from yeast.
    Asenjo JA; Andrews BA; Pitts JM
    Ann N Y Acad Sci; 1988; 542():140-52. PubMed ID: 3067631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential product release (DPR) of proteins from yeast: a new technique for selective product recovery from microbial cells.
    Huang RB; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 1991 Nov; 38(9):977-85. PubMed ID: 18600860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic lysis of microbial cells.
    Salazar O; Asenjo JA
    Biotechnol Lett; 2007 Jul; 29(7):985-94. PubMed ID: 17464453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of enzymatic lysis and disruption of yeast cells: I. Evaluation of two lytic systems with different properties.
    Hunter JB; Asenjo JA
    Biotechnol Bioeng; 1987 Sep; 30(4):471-80. PubMed ID: 18581424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microscale yeast cell disruption technique for integrated process development strategies.
    Wenger MD; DePhillips P; Bracewell DG
    Biotechnol Prog; 2008; 24(3):606-14. PubMed ID: 18410155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structured mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells.
    Hunter JB; Asenjo JA
    Biotechnol Bioeng; 1988 Jun; 31(9):929-43. PubMed ID: 18584701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A population balance model of enzymatic lysis of microbial cells.
    Hunter JB; Asenjo JA
    Biotechnol Bioeng; 1990 Jan; 35(1):31-42. PubMed ID: 18588229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and chemical cell disruption for the recovery of intracellular proteins.
    Hopkins TR
    Bioprocess Technol; 1991; 12():57-83. PubMed ID: 1367090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.
    Balasundaram B; Harrison ST
    Biotechnol Bioeng; 2006 Jun; 94(2):303-11. PubMed ID: 16570316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of productivity in lysis-deficient lambda expression systems.
    Padukone N; Peretti SW; Ollis DF
    Biotechnol Bioeng; 1992 Sep; 40(6):697-704. PubMed ID: 18601169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.
    Biziulevicius GA
    Med Hypotheses; 2006; 67(6):1386-8. PubMed ID: 16870353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in product release strategies and impact on bioprocess design.
    Balasundaram B; Harrison S; Bracewell DG
    Trends Biotechnol; 2009 Aug; 27(8):477-85. PubMed ID: 19573944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appropriate mammalian expression systems for biopharmaceuticals.
    Werner RG; Noé W; Kopp K; Schlüter M
    Arzneimittelforschung; 1998 Aug; 48(8):870-80. PubMed ID: 9748718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between cell disruption conditions, cell debris particle size, and inclusion body release.
    Van Hee P; Middelberg AP; Van Der Lans RG; Van Der Wielen LA
    Biotechnol Bioeng; 2004 Oct; 88(1):100-10. PubMed ID: 15449302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ extraction of intracellular L-asparaginase using thermoseparating aqueous two-phase systems.
    Zhu JH; Yan XL; Chen HJ; Wang ZH
    J Chromatogr A; 2007 Apr; 1147(1):127-34. PubMed ID: 17328902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible product gene expression technology tailored to bioprocess engineering.
    Weber W; Fussenegger M
    Curr Opin Biotechnol; 2007 Oct; 18(5):399-410. PubMed ID: 17933507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical permeabilization of cells for intracellular product release.
    Naglak TJ; Hettwer DJ; Wang HY
    Bioprocess Technol; 1990; 9():177-205. PubMed ID: 1366880
    [No Abstract]   [Full Text] [Related]  

  • 20. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.