BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1366905)

  • 1. Protease-catalyzed synthetic reactions and immobilization-activation of the enzymes in hydrophilic organic solvents.
    Kise H; Hayakawa A; Noritomi H
    J Biotechnol; 1990 Jun; 14(3-4):239-54. PubMed ID: 1366905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of proteases to porous chitosan beads and their catalysis for ester and peptide synthesis in organic solvents.
    Kise H; Hayakawa A
    Enzyme Microb Technol; 1991 Jul; 13(7):584-8. PubMed ID: 1367641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol-gel immobilization of serine proteases for application in organic solvents.
    van Unen DJ; Engbersen JF; Reinhoudt DN
    Biotechnol Bioeng; 2001 Oct; 75(2):154-8. PubMed ID: 11536137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide synthesis by proteases in organic solvents: medium effect on substrate specificity.
    Nagashima T; Watanabe A; Kise H
    Enzyme Microb Technol; 1992 Oct; 14(10):842-7. PubMed ID: 1368970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide and ester synthesis in organic solvents catalyzed by seryl proteases linked to alumina.
    Pugnière M; Skalli A; Coletti-Previero MA; Previero A
    Proteins; 1986 Oct; 1(2):134-8. PubMed ID: 3482466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic catalysis in nonaqueous solvents.
    Zaks A; Klibanov AM
    J Biol Chem; 1988 Mar; 263(7):3194-201. PubMed ID: 3277967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site titration of serine proteases in organic solvents.
    Wangikar PP; Carmichael D; Clark DS; Dordick JS
    Biotechnol Bioeng; 1996 May; 50(3):329-35. PubMed ID: 18626960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtilisin-catalysed peptide synthesis and transesterification in organic solvents.
    Ferjancic A; Puigserver A; Gaertner H
    Appl Microbiol Biotechnol; 1990 Mar; 32(6):651-7. PubMed ID: 1367438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent.
    Duboué-Dijon E; Pluhařová E; Domin D; Sen K; Fogarty AC; Chéron N; Laage D
    J Phys Chem B; 2017 Jul; 121(29):7027-7041. PubMed ID: 28675789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of immobilized lipase on hydrophobic superparamagnetic microspheres to catalyze esterification.
    Guo Z; Sun Y
    Biotechnol Prog; 2004; 20(2):500-6. PubMed ID: 15058995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic transesterification of purine nucleoside having a low solubility in organic medium.
    Fan H; Kitagawa M; Raku T; Tokiwa Y
    Biotechnol Lett; 2004 Aug; 26(16):1261-4. PubMed ID: 15483383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents.
    Gaertner H; Puigserver A
    Eur J Biochem; 1989 Apr; 181(1):207-13. PubMed ID: 2653820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants.
    García-Alles LF; Gotor V
    Biotechnol Bioeng; 1998 Sep; 59(6):684-94. PubMed ID: 10099389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activation in organic solvents: co-lyophilization of subtilisin Carlsberg with methyl-beta-cyclodextrin renders an enzyme catalyst more active than the cross-linked enzyme crystals.
    Montañez-Clemente I; Alvira E; Macias M; Ferrer A; Fonceca M; Rodriguez J; Gonzalez A; Barletta G
    Biotechnol Bioeng; 2002 Apr; 78(1):53-9. PubMed ID: 11857281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of soluble and active subtilisin and alpha-chymotrypsin in organic solvents via hydrophobic ion pairing.
    Meyer JD; Kendrick BS; Matsuura JE; Ruth JA; Bryan PN; Manning MC
    Int J Pept Protein Res; 1996 Mar; 47(3):177-81. PubMed ID: 8740967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.
    Cruz JC; Würges K; Kramer M; Pfromm PH; Rezac ME; Czermak P
    Methods Mol Biol; 2011; 743():147-60. PubMed ID: 21553189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards more active biocatalysts in organic media: increasing the activity of salt-activated enzymes.
    Ru MT; Wu KC; Lindsay JP; Dordick JS; Reimer JA; Clark DS
    Biotechnol Bioeng; 2001 Oct; 75(2):187-96. PubMed ID: 11536141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the salt-induced activation of enzymes in organic solvents: effects of lyophilization time and water content.
    Ru MT; Dordick JS; Reimer JA; Clark DS
    Biotechnol Bioeng; 1999 Apr; 63(2):233-41. PubMed ID: 10099600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis.
    Blanco RM; Bastida A; Cuesta C; Alvaro G; Fernandez-Lafuente R; Rosell CM; Guisan JM
    Biomed Biochim Acta; 1991; 50(10-11):S110-3. PubMed ID: 1820029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of organic solvents on enantioselectivity of protease catalysis.
    Kawashiro K; Sugahara H; Sugiyama S; Hayashi H
    Biotechnol Bioeng; 1997 Jan; 53(1):26-31. PubMed ID: 18629956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.