These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1366973)

  • 21. Herbicide transformation. II. Studies with an acylamidase of Fusarium solani.
    Lanzilotta RP; Pramer D
    Appl Microbiol; 1970 Feb; 19(2):307-13. PubMed ID: 5437306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and properties of aryl acylamidase from Pseudomonas fluorescens ATCC 39004.
    Hammond PM; Price CP; Scawen MD
    Eur J Biochem; 1983 May; 132(3):651-5. PubMed ID: 6406224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a newly isolated strain Rhodococcus erythropolis ZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid.
    Jin LQ; Li YF; Liu ZQ; Zheng YG; Shen YC
    N Biotechnol; 2011 Oct; 28(6):610-5. PubMed ID: 21549865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1652-1655. PubMed ID: 29862898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.
    Lee SH; Park SJ; Park OJ; Cho J; Rhee JW
    J Microbiol Biotechnol; 2009 May; 19(5):474-81. PubMed ID: 19494695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of p-acetaminophenol by whole-cell catalysis using Escherichia coli overexpressing bacterial aryl acylamidase.
    Ko HJ; Bang WG; Kim KH; Choi IG
    Biotechnol Lett; 2012 Apr; 34(4):677-82. PubMed ID: 22130742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11.
    Zhang X; Huang Y; Harvey PR; Li H; Ren Y; Li J; Wang J; Yang H
    PLoS One; 2013; 8(10):e74810. PubMed ID: 24098350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of agitation and aeration on the production of nitrile hydratase by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor.
    Kamble AL; Meena VS; Banerjee UC
    Lett Appl Microbiol; 2010 Oct; 51(4):413-20. PubMed ID: 20723042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources].
    Gogotov IN; Khodakov RS
    Prikl Biokhim Mikrobiol; 2008; 44(2):207-12. PubMed ID: 18669264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids.
    Fournand D; Bigey F; Arnaud A
    Appl Environ Microbiol; 1998 Aug; 64(8):2844-52. PubMed ID: 9687439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and properties of an aryl acylamidase of Bacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides.
    Engelhardt G; Wallnöfer PR; Plapp R
    Appl Microbiol; 1973 Nov; 26(5):709-18. PubMed ID: 4762392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of enzyme activity and enantioselectivity via cultivation in nitrile metabolism by Rhodococcus sp. CGMCC 0497.
    Wu ZL; Li ZY
    Biotechnol Appl Biochem; 2002 Feb; 35(1):61-7. PubMed ID: 11834131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT).
    Bajaj A; Mayilraj S; Mudiam MK; Patel DK; Manickam N
    Bioresour Technol; 2014 Sep; 167():398-406. PubMed ID: 25000395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a rhodococcus species strain able to grow on ortho- and para-xylene.
    Jang JY; Kim D; Bae HW; Choi KY; Chae JC; Zylstra GJ; Kim YM; Kim E
    J Microbiol; 2005 Aug; 43(4):325-30. PubMed ID: 16145546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates].
    Pirog TP; Shevchuk TA; Voloshina IN; Karpenko EV
    Prikl Biokhim Mikrobiol; 2004; 40(5):544-50. PubMed ID: 15553786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrile hydrolysis by
    Langdahl BR; Bisp P; Ingvorsen K
    Microbiology (Reading); 1996 Jan; 142(1):145-154. PubMed ID: 33657740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of aniline-degrading Rhodococcus sp. strain AN5.
    Zhuang R; Zhong W; Yao J; Chen H; Tian L; Zhou Y; Wang F; Bramanti E; Zaray G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Nov; 42(13):2009-16. PubMed ID: 17990163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.