These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 13673)
1. The redox state of the glutathione in the bovine corneal epithelium. Reim M; Beermann HR; Luthe P; Cattepoel H Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Dec; 201(2):143-8. PubMed ID: 13673 [TBL] [Abstract][Full Text] [Related]
2. Total and oxidized glutathione in bovine corneal epithelium and endothelium. Whikehart DR Exp Eye Res; 1975 Jul; 21(1):89-92. PubMed ID: 1140223 [No Abstract] [Full Text] [Related]
3. Oxidation-reduction reactions involving ascorbic acid and the hexosemonophosphate shunt in corneal epithelium. Anderson EI; Spector A Invest Ophthalmol; 1971 Jan; 10(1):41-53. PubMed ID: 4395184 [No Abstract] [Full Text] [Related]
4. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG; Stevens MJ Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971 [TBL] [Abstract][Full Text] [Related]
5. Adenosine phosphate and glutathione levels in the regenerated corneal epithelium after abrasion and mild alkali burns. Reim M; Conze A; Kaszuba HJ Graefes Arch Clin Exp Ophthalmol; 1982; 218(1):42-5. PubMed ID: 7056481 [TBL] [Abstract][Full Text] [Related]
6. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866 [TBL] [Abstract][Full Text] [Related]
7. Oxidized and reduced glutathione levels of the cornea in vivo. Reim M; Weidenfeld E; Budi Santoso AW Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1979 Aug; 211(2):165-75. PubMed ID: 386823 [TBL] [Abstract][Full Text] [Related]
8. Compartmentation of redox metabolites in the anterior eye segment? Reim M; Luthe P Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1977 Oct; 204(2):135-40. PubMed ID: 303870 [TBL] [Abstract][Full Text] [Related]
9. An effect of enzymic reduction of steroids on triphosphopyridine nucleotide-dependent glucose 6-phosphate oxidation. YIELDING KL; TOMKINS GM Biochim Biophys Acta; 1960 Apr; 39():348-51. PubMed ID: 13846526 [No Abstract] [Full Text] [Related]
10. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
11. Changes of corneal redox state in diabetic animal models. Shimazaki J; Tsubota K; Yoshida A; Tornheim K; Laing RA Cornea; 1995 Mar; 14(2):196-201. PubMed ID: 7743804 [TBL] [Abstract][Full Text] [Related]
12. The glutathione of the cornea. Reim M; Ashauer D Arch Ophtalmol Rev Gen Ophtalmol; 1975 Feb; 35(2):153-64. PubMed ID: 175773 [No Abstract] [Full Text] [Related]
13. Rapid stimulation on the hexose monophosphate shunt in the isolated perfused rat heart: possible involvement of oxidized glutathione. Zimmer HG; Bünger R; Koschine H; Steinkopff G J Mol Cell Cardiol; 1981 May; 13(5):531-5. PubMed ID: 7265260 [No Abstract] [Full Text] [Related]
14. Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates. Masters BR; Riley MV; Fischbarg J; Chance B Exp Eye Res; 1983 Jul; 37(1):1-9. PubMed ID: 6873201 [TBL] [Abstract][Full Text] [Related]
15. The roles of glutathione reductase and gamma-glutamyl transpeptidase in corneal transendothelial fluid transport mediated by oxidized glutathione and glucose. Anderson EI; Wright DD Exp Eye Res; 1982 Jul; 35(1):11-9. PubMed ID: 6124438 [No Abstract] [Full Text] [Related]
16. Possible role of oxidized glutathione for the regulation of the myocardial hexose monophosphate shunt. Zimmer HG; Bünger R; Koschine H; Steinkopff G; Ibel H Adv Myocardiol; 1982; 3():577-84. PubMed ID: 6189165 [TBL] [Abstract][Full Text] [Related]
17. Single-sample preparation for simultaneous cellular redox and energy state determination. Lazzarino G; Amorini AM; Fazzina G; Vagnozzi R; Signoretti S; Donzelli S; Di Stasio E; Giardina B; Tavazzi B Anal Biochem; 2003 Nov; 322(1):51-9. PubMed ID: 14705780 [TBL] [Abstract][Full Text] [Related]
18. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium. Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655 [TBL] [Abstract][Full Text] [Related]
19. Relationship between gluconeogenesis and glutathione redox state in rabbit kidney-cortex tubules. Winiarska K; Drozak J; Wegrzynowicz M; Jagielski AK; Bryła J Metabolism; 2003 Jun; 52(6):739-46. PubMed ID: 12800101 [TBL] [Abstract][Full Text] [Related]
20. Early changes in hepatic redox homeostasis following treatment with a single dose of valproic acid. Cotariu D; Evans S; Zaidman JL; Marcus O Biochem Pharmacol; 1990 Aug; 40(3):589-93. PubMed ID: 2116802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]