These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1367325)

  • 1. Monitoring the centrifugal recovery of recombinant protein inclusion bodies.
    Middelberg AP; O'Neill BK
    Aust J Biotechnol; 1991 Apr; 5(2):87-9. PubMed ID: 1367325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugal processing of cell debris and inclusion bodies from recombinant Escherichia coli.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996; 6(6):361-72. PubMed ID: 9352683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution particle size analysis in biotechnology process control.
    Thomas JC; Middelberg AP; Hamel JF; Snoswell MA
    Biotechnol Prog; 1991; 7(4):377-9. PubMed ID: 1369330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal recovery and dissolution of recombinant Gly-IGF-II inclusion-bodies: the impact of feedrate and re-centrifugation on protein yield.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996 Jun; 6(3):185-92. PubMed ID: 8987684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra scale-down to define and improve the relationship between flocculation and disc-stack centrifugation.
    Berrill A; Ho SV; Bracewell DG
    Biotechnol Prog; 2008; 24(2):426-31. PubMed ID: 18324825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between cell disruption conditions, cell debris particle size, and inclusion body release.
    Van Hee P; Middelberg AP; Van Der Lans RG; Van Der Wielen LA
    Biotechnol Bioeng; 2004 Oct; 88(1):100-10. PubMed ID: 15449302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel technique for the measurement of disruption in high-pressure homogenization: Studies on E. coli containing recombinant inclusion bodies.
    Middelberg AP; O'Neill BK; L Bogle ID; Snoswell MA
    Biotechnol Bioeng; 1991 Aug; 38(4):363-70. PubMed ID: 18600772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of inclusion bodies may be the key factor for the stability of expressed products in E. coli.
    Wei G; Tang JG
    Biochem Mol Biol Int; 1995 Nov; 37(5):895-901. PubMed ID: 8624495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension.
    Balgi G; Reynolds J; Mayer RH; Cooley RE; Sevick-Muraca EM
    Biotechnol Prog; 1999; 15(6):1106-14. PubMed ID: 10585197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penicillin-binding protein 2a of Streptococcus pneumoniae: expression in Escherichia coli and purification and refolding of inclusion bodies into a soluble and enzymatically active enzyme.
    Zhao G; Meier TI; Hoskins J; Jaskunas SR
    Protein Expr Purif; 1999 Jul; 16(2):331-9. PubMed ID: 10419829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient solubilization of inclusion bodies.
    Freydell EJ; Ottens M; Eppink M; van Dedem G; van der Wielen L
    Biotechnol J; 2007 Jun; 2(6):678-84. PubMed ID: 17492713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and on-column refolding of EGFP overexpressed as inclusion bodies in Escherichia coli with expanded bed anion exchange chromatography.
    Cabanne C; Noubhani AM; Hocquellet A; Dole F; Dieryck W; Santarelli X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Apr; 818(1):23-7. PubMed ID: 15722040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput recovery of therapeutic proteins from the inclusion bodies of Escherichia coli: an overview.
    Panda AK
    Methods Mol Biol; 2005; 308():155-61. PubMed ID: 16082033
    [No Abstract]   [Full Text] [Related]  

  • 14. Cumulative sedimentation analysis of Escherichia coli debris size.
    Wong HH; O'Neill BK; Middelberg AP
    Biotechnol Bioeng; 1997 Aug; 55(3):556-64. PubMed ID: 18636523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified bioprocess for human alpha-fetoprotein production from inclusion bodies.
    Leong SS; Middelberg AP
    Biotechnol Bioeng; 2007 May; 97(1):99-117. PubMed ID: 17115449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra scale-down approach for the prediction of full-scale recovery of ovine polycolonal immunoglobulins used in the manufacture of snake venom-specific Fab fragment.
    Neal G; Christie J; Keshavarz-Moore E; Shamlou PA
    Biotechnol Bioeng; 2003 Jan; 81(2):149-57. PubMed ID: 12451551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partition features and renaturation enhancement of chymosin in aqueous two-phase systems.
    Reh G; Spelzini D; Tubío G; Picó G; Farruggia B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Dec; 860(1):98-105. PubMed ID: 17988962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step change in the efficiency of centrifugation through cell engineering: co-expression of Staphylococcal nuclease to reduce the viscosity of the bioprocess feedstock.
    Balasundaram B; Nesbeth D; Ward JM; Keshavarz-Moore E; Bracewell DG
    Biotechnol Bioeng; 2009 Sep; 104(1):134-42. PubMed ID: 19415775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A methodology for centrifuge selection for the separation of high solids density cell broths by visualisation of performance using windows of operation.
    Salte H; King JM; Baganz F; Hoare M; Titchener-Hooker NJ
    Biotechnol Bioeng; 2006 Dec; 95(6):1218-27. PubMed ID: 16865731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein-free medium.
    Johnson M; Lanthier S; Massie B; Lefebvre G; Kamen AA
    Biotechnol Prog; 1996; 12(6):855-64. PubMed ID: 8983210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.