These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1367482)

  • 1. Improvement of glidobactin A production by Polyangium brachysporum.
    Titus JA; Roundy CA
    J Ind Microbiol; 1990 Nov; 6(3):215-8. PubMed ID: 1367482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of the minor components of glidobactins in Polyangium brachysporum.
    Numata K; Murakami T; Oka M; Yamamoto H; Hatori M; Miyaki T; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1358-65. PubMed ID: 3142843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity.
    Oka M; Nishiyama Y; Ohta S; Kamei H; Konishi M; Miyaki T; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1331-7. PubMed ID: 3142840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic formation of glidobactamine: a peptide nucleus of glidobactins A, B and C, new lipopeptide antitumor antibiotics.
    Numata K; Oka M; Nakakita Y; Murakami T; Miyaki T; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1351-7. PubMed ID: 3142842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium.
    Schellenberg B; Bigler L; Dudler R
    Environ Microbiol; 2007 Jul; 9(7):1640-50. PubMed ID: 17564599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the glidobactin producing strain [Polyangium] brachysporum DSM 7029.
    Tang B; Yu Y; Zhang Y; Zhao G; Ding X
    J Biotechnol; 2015 Sep; 210():83-4. PubMed ID: 26142061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glidobactins D, E, F, G and H; minor components of the antitumor antibiotic glidobactin.
    Oka M; Ohkuma H; Kamei H; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Dec; 41(12):1906-9. PubMed ID: 3145259
    [No Abstract]   [Full Text] [Related]  

  • 8. Fed-batch mode in shake flasks by slow-release technique.
    Jeude M; Dittrich B; Niederschulte H; Anderlei T; Knocke C; Klee D; Büchs J
    Biotechnol Bioeng; 2006 Oct; 95(3):433-45. PubMed ID: 16736531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved processes for the production and isolation of dynemicin A and large-scale fermentation in a 10,000-liter fermentor.
    Lam KS; Titus JA; Dabrah TT; Kimball DL; Veitch JM; Gustavson DR; Compton BJ; Matson JA; Forenza S; Ross J
    J Ind Microbiol; 1992 Nov; 11(1):7-12. PubMed ID: 1369016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reclassification of '
    Tang B; Yu Y; Liang J; Zhang Y; Bian X; Zhi X; Ding X
    Int J Syst Evol Microbiol; 2019 Sep; 69(9):2877-2883. PubMed ID: 31274403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of the antitumor antibiotic glidobactin.
    Oka M; Numata K; Nishiyama Y; Kamei H; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Dec; 41(12):1812-22. PubMed ID: 3145257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar substrates for L-lysine fermentation by Ustilago maydis.
    Sánchez-Marroquín A; Ledezma M; Carreño R
    Appl Microbiol; 1970 Nov; 20(5):687-92. PubMed ID: 5485081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001.
    Meng Q; Zhang T; Wei W; Mu W; Miao M
    Appl Biochem Biotechnol; 2017 Jan; 181(1):391-406. PubMed ID: 27557902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor.
    Desai RP; Leaf T; Woo E; Licari P
    J Ind Microbiol Biotechnol; 2002 May; 28(5):297-301. PubMed ID: 11986935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambruticin S production in amino acid rich media.
    Hopf NW; Yonsel S; Deckwer WD
    Appl Microbiol Biotechnol; 1990 Feb; 32(5):499-504. PubMed ID: 1369434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains.
    Regentin R; Frykman S; Lau J; Tsuruta H; Licari P
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):451-5. PubMed ID: 12764559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates.
    Costas Malvido M; Alonso González E; Pérez Guerra N
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7899-908. PubMed ID: 27112347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins.
    Miyashiro S; Yamanaka S; Takayama S; Shibai H
    J Antibiot (Tokyo); 1988 Apr; 41(4):433-8. PubMed ID: 3131289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose production by fed-batch fermentation in molasses medium.
    Bae S; Shoda M
    Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.