BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1367482)

  • 1. Improvement of glidobactin A production by Polyangium brachysporum.
    Titus JA; Roundy CA
    J Ind Microbiol; 1990 Nov; 6(3):215-8. PubMed ID: 1367482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of the minor components of glidobactins in Polyangium brachysporum.
    Numata K; Murakami T; Oka M; Yamamoto H; Hatori M; Miyaki T; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1358-65. PubMed ID: 3142843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity.
    Oka M; Nishiyama Y; Ohta S; Kamei H; Konishi M; Miyaki T; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1331-7. PubMed ID: 3142840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic formation of glidobactamine: a peptide nucleus of glidobactins A, B and C, new lipopeptide antitumor antibiotics.
    Numata K; Oka M; Nakakita Y; Murakami T; Miyaki T; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Oct; 41(10):1351-7. PubMed ID: 3142842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium.
    Schellenberg B; Bigler L; Dudler R
    Environ Microbiol; 2007 Jul; 9(7):1640-50. PubMed ID: 17564599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the glidobactin producing strain [Polyangium] brachysporum DSM 7029.
    Tang B; Yu Y; Zhang Y; Zhao G; Ding X
    J Biotechnol; 2015 Sep; 210():83-4. PubMed ID: 26142061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glidobactins D, E, F, G and H; minor components of the antitumor antibiotic glidobactin.
    Oka M; Ohkuma H; Kamei H; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Dec; 41(12):1906-9. PubMed ID: 3145259
    [No Abstract]   [Full Text] [Related]  

  • 8. Fed-batch mode in shake flasks by slow-release technique.
    Jeude M; Dittrich B; Niederschulte H; Anderlei T; Knocke C; Klee D; Büchs J
    Biotechnol Bioeng; 2006 Oct; 95(3):433-45. PubMed ID: 16736531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved processes for the production and isolation of dynemicin A and large-scale fermentation in a 10,000-liter fermentor.
    Lam KS; Titus JA; Dabrah TT; Kimball DL; Veitch JM; Gustavson DR; Compton BJ; Matson JA; Forenza S; Ross J
    J Ind Microbiol; 1992 Nov; 11(1):7-12. PubMed ID: 1369016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reclassification of '
    Tang B; Yu Y; Liang J; Zhang Y; Bian X; Zhi X; Ding X
    Int J Syst Evol Microbiol; 2019 Sep; 69(9):2877-2883. PubMed ID: 31274403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of the antitumor antibiotic glidobactin.
    Oka M; Numata K; Nishiyama Y; Kamei H; Konishi M; Oki T; Kawaguchi H
    J Antibiot (Tokyo); 1988 Dec; 41(12):1812-22. PubMed ID: 3145257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar substrates for L-lysine fermentation by Ustilago maydis.
    Sánchez-Marroquín A; Ledezma M; Carreño R
    Appl Microbiol; 1970 Nov; 20(5):687-92. PubMed ID: 5485081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001.
    Meng Q; Zhang T; Wei W; Mu W; Miao M
    Appl Biochem Biotechnol; 2017 Jan; 181(1):391-406. PubMed ID: 27557902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor.
    Desai RP; Leaf T; Woo E; Licari P
    J Ind Microbiol Biotechnol; 2002 May; 28(5):297-301. PubMed ID: 11986935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambruticin S production in amino acid rich media.
    Hopf NW; Yonsel S; Deckwer WD
    Appl Microbiol Biotechnol; 1990 Feb; 32(5):499-504. PubMed ID: 1369434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains.
    Regentin R; Frykman S; Lau J; Tsuruta H; Licari P
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):451-5. PubMed ID: 12764559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates.
    Costas Malvido M; Alonso González E; Pérez Guerra N
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7899-908. PubMed ID: 27112347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins.
    Miyashiro S; Yamanaka S; Takayama S; Shibai H
    J Antibiot (Tokyo); 1988 Apr; 41(4):433-8. PubMed ID: 3131289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose production by fed-batch fermentation in molasses medium.
    Bae S; Shoda M
    Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.