These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1367541)

  • 61. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens.
    Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y
    Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil].
    Strunnikova OK; Shakhnazarova VIu; Vishnevskaia NA; Chebotar' VK; Tikhonovich IA
    Mikrobiologiia; 2007; 76(5):675-81. PubMed ID: 18069329
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Survival and impact of genetically engineered Pseudomonas putida harboring mercury resistance gene in soil microcosms.
    Iwasaki K; Uchiyama H; Yagi O
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):156-9. PubMed ID: 7764510
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Resting state in Pseudomonas fluorescens induced by a prolonged water deficit].
    Shevtsova II; Ukrainskiĭ VV
    Mikrobiologiia; 1980; 49(6):888-92. PubMed ID: 6782433
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evolution under different storage conditions of anomalous blue coloration of Mozzarella cheese intentionally contaminated with a pigment-producing strain of Pseudomonas fluorescens.
    Cenci-Goga BT; Karama M; Sechi P; Iulietto MF; Novelli S; Mattei S
    J Dairy Sci; 2014 Nov; 97(11):6708-18. PubMed ID: 25200780
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The chitinase encoding Tn7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil.
    Koby S; Schickler H; Chet I; Oppenheim AB
    Gene; 1994 Sep; 147(1):81-3. PubMed ID: 8088552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pseudomonas fluorescens JH 70-4 promotes pb stabilization and early seedling growth of sudan grass in contaminated mining site soil.
    Shim J; Babu AG; Velmurugan P; Shea PJ; Oh BT
    Environ Technol; 2014; 35(17-20):2589-96. PubMed ID: 25145215
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of carbon dioxide on growth of Pseudomonas fluorescens.
    Gill CO; Tan KH
    Appl Environ Microbiol; 1979 Aug; 38(2):237-40. PubMed ID: 117751
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bioformulation of Microbial Fertilizer Based on Clay and Alginate Encapsulation.
    Meftah Kadmiri I; El Mernissi N; Azaroual SE; Mekhzoum MEM; Qaiss AEK; Bouhfid R
    Curr Microbiol; 2021 Jan; 78(1):86-94. PubMed ID: 33104853
    [TBL] [Abstract][Full Text] [Related]  

  • 70. IVET experiments in Pseudomonas fluorescens reveal cryptic promoters at loci associated with recognizable overlapping genes.
    Silby MW; Rainey PB; Levy SB
    Microbiology (Reading); 2004 Mar; 150(Pt 3):518-520. PubMed ID: 14993298
    [No Abstract]   [Full Text] [Related]  

  • 71. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil.
    Gómez P; Buckling A
    ISME J; 2013 Nov; 7(11):2242-4. PubMed ID: 23823495
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Alginate genes are required for optimal soil colonization and persistence by
    Marshall DC; Arruda BE; Silby MW
    Access Microbiol; 2019; 1(3):e000021. PubMed ID: 32974516
    [No Abstract]   [Full Text] [Related]  

  • 73. Compost spatial heterogeneity promotes evolutionary diversification of a bacterium.
    van Houte S; Padfield D; Gómez P; Luján AM; Brockhurst MA; Paterson S; Buckling A
    J Evol Biol; 2021 Feb; 34(2):246-255. PubMed ID: 33111439
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of temperature on mineralization by heterotrophic bacteria.
    Tison DL; Pope DH
    Appl Environ Microbiol; 1980 Mar; 39(3):584-7. PubMed ID: 6770757
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interactions between a genetically markedPseudomonas fluorescens strain and bacteriophage ΦR2f in soil: Effects of nutrients, alginate encapsulation, and the wheat rhizosphere.
    Smit E; Wolters AC; Lee H; Trevors JT; van Elsas JD
    Microb Ecol; 1996 Mar; 31(2):125-40. PubMed ID: 24185737
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release.
    Ripp S; Nivens DE; Werner C; Sayler GS
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):736-41. PubMed ID: 10919336
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Detection and Enumeration of a Tagged Pseudomonas fluorescens Strain by Using Soil with Markers Associated with an Engineered Catabolic Pathway.
    Hwang I; Farrand SK
    Appl Environ Microbiol; 1997 Feb; 63(2):602-8. PubMed ID: 16535517
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of Pore Size Location in Determining Bacterial Activity during Predation by Protozoa in Soil.
    Wright DA; Killham K; Glover LA; Prosser JI
    Appl Environ Microbiol; 1995 Oct; 61(10):3537-43. PubMed ID: 16535141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms.
    Xiang SR; Cook M; Saucier S; Gillespie P; Socha R; Scroggins R; Beaudette LA
    Appl Environ Microbiol; 2010 Nov; 76(21):7126-35. PubMed ID: 20817796
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid method for isolation of desiccation-tolerant strains and xeroprotectants.
    Narváez-Reinaldo JJ; Barba I; González-López J; Tunnacliffe A; Manzanera M
    Appl Environ Microbiol; 2010 Aug; 76(15):5254-62. PubMed ID: 20562279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.