These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1367676)

  • 1. Alteration of enzyme specificity and catalysis by protein engineering.
    Wilks HM; Holbrook JJ
    Curr Opin Biotechnol; 1991 Aug; 2(4):561-7. PubMed ID: 1367676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of enzyme catalysis by engineering surface charge.
    Alvaro G; Russell AJ
    Methods Enzymol; 1991; 202():620-43. PubMed ID: 1784191
    [No Abstract]   [Full Text] [Related]  

  • 3. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in engineering proteins for biocatalysis.
    Li Y; Cirino PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-Guided Surface Engineering for Enzyme Improvement.
    Wilding M; Scott C; Warden AC
    Sci Rep; 2018 Aug; 8(1):11998. PubMed ID: 30097591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis.
    Lairson LL; Watts AG; Wakarchuk WW; Withers SG
    Nat Chem Biol; 2006 Dec; 2(12):724-8. PubMed ID: 17057723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.
    Kataoka M; Miyakawa T; Shimizu S; Tanokura M
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5747-57. PubMed ID: 27188776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-assisted catalysis: molecular basis and biological significance.
    Dall'Acqua W; Carter P
    Protein Sci; 2000 Jan; 9(1):1-9. PubMed ID: 10739241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis.
    Siezen RJ; Bruinenberg PG; Vos P; van Alen-Boerrigter I; Nijhuis M; Alting AC; Exterkate FA; de Vos WM
    Protein Eng; 1993 Nov; 6(8):927-37. PubMed ID: 8309942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering enzyme specificity by "substrate-assisted catalysis".
    Carter P; Wells JA
    Science; 1987 Jul; 237(4813):394-9. PubMed ID: 3299704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases.
    Kim K; Plapp BV
    Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling chirality.
    Turner NJ
    Curr Opin Biotechnol; 2003 Aug; 14(4):401-6. PubMed ID: 12943849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies.
    Di Luccio E; Elling RA; Wilson DK
    Biochem J; 2006 Nov; 400(1):105-14. PubMed ID: 16813561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
    Zhang K; Bhuripanyo K; Wang Y; Yin J
    Methods Mol Biol; 2015; 1319():245-60. PubMed ID: 26060080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of new enzymes via covalent modification of existing proteins.
    Qi D; Tann CM; Haring D; Distefano MD
    Chem Rev; 2001 Oct; 101(10):3081-111. PubMed ID: 11710063
    [No Abstract]   [Full Text] [Related]  

  • 17. Shining a light on enzyme promiscuity.
    Copley SD
    Curr Opin Struct Biol; 2017 Dec; 47():167-175. PubMed ID: 29169066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme design by chemical modification of protein scaffolds.
    Tann CM; Qi D; Distefano MD
    Curr Opin Chem Biol; 2001 Dec; 5(6):696-704. PubMed ID: 11738181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in molecular modification of ω-transaminase].
    Gao X; Wei P
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1057-1068. PubMed ID: 30058305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of enzyme specificity and catalysis.
    Douglas KT
    Curr Opin Biotechnol; 1992 Aug; 3(4):370-7. PubMed ID: 1368438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.