BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 13677452)

  • 21. Macronuclear development in conjugants of Tetrahymena thermophila, which were artificially separated at meiotic prophase.
    Kiersnowska M; Kaczanowski A; Morga J
    J Eukaryot Microbiol; 2000; 47(2):139-47. PubMed ID: 10750841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Okadaic acid promotes cell division in synchronized Tetrahymena pyriformis and in the cell division-arrested (cdaA1) temperature-sensitive mutant of T. thermophila.
    Buzanska L; Wheatley DN
    Eur J Cell Biol; 1994 Feb; 63(1):149-58. PubMed ID: 8005101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of GVBD-inducing protein from the ciliate Tetrahymena thermophila.
    Sugii M; Fujishima M
    J Eukaryot Microbiol; 2001; 48(4):414-24. PubMed ID: 11456317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The condensin complex is essential for amitotic segregation of bulk chromosomes, but not nucleoli, in the ciliate Tetrahymena thermophila.
    Cervantes MD; Coyne RS; Xi X; Yao MC
    Mol Cell Biol; 2006 Jun; 26(12):4690-700. PubMed ID: 16738332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of supraoptimal temperatures on population growth and cortical patterning in Tetrahymena pyriformis and Tetrahymena thermophila: a comparison.
    Frankel J; Nelsen EM
    J Eukaryot Microbiol; 2001; 48(2):135-46. PubMed ID: 12095101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate
    Jiang YY; Maier W; Baumeister R; Minevich G; Joachimiak E; Ruan Z; Kannan N; Clarke D; Frankel J; Gaertig J
    Genetics; 2017 Jun; 206(2):873-888. PubMed ID: 28413159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regional differentiation of the membrane skeleton in Tetrahymena.
    Williams NE; Honts JE; Jaeckel-Williams RF
    J Cell Sci; 1987 Apr; 87 ( Pt 3)():457-63. PubMed ID: 3429495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface display of a parasite antigen in the ciliate Tetrahymena thermophila.
    Gaertig J; Gao Y; Tishgarten T; Clark TG; Dickerson HW
    Nat Biotechnol; 1999 May; 17(5):462-5. PubMed ID: 10331805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila.
    Kilpatrick AM; Gurrola TE; Sterner RC; Sleister HM; Honts JE; Fowler CA
    Biomol NMR Assign; 2016 Oct; 10(2):281-5. PubMed ID: 27155947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family.
    Stemm-Wolf AJ; Morgan G; Giddings TH; White EA; Marchione R; McDonald HB; Winey M
    Mol Biol Cell; 2005 Aug; 16(8):3606-19. PubMed ID: 15944224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The vegetative micronucleus has a critical role in maintenance of cortical structure in Tetrahymena thermophila.
    Haremaki T; Sugai T; Takahashi M
    Cell Struct Funct; 1995 Jun; 20(3):239-44. PubMed ID: 7586014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of properties of cilia using Tetrahymena thermophila.
    Rajagopalan V; Corpuz EO; Hubenschmidt MJ; Townsend CR; Asai DJ; Wilkes DE
    Methods Mol Biol; 2009; 586():283-99. PubMed ID: 19768437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of dopamine receptor in Tetrahymena thermophila by fluorescent ligands.
    Ud-Daula A; Pfister G; Schramm KW
    Pak J Biol Sci; 2012 Dec; 15(23):1133-8. PubMed ID: 24261116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sas4 links basal bodies to cell division via Hippo signaling.
    Ruehle MD; Stemm-Wolf AJ; Pearson CG
    J Cell Biol; 2020 Aug; 219(8):. PubMed ID: 32435796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytological analysis of Tetrahymena thermophila.
    Winey M; Stemm-Wolf AJ; Giddings TH; Pearson CG
    Methods Cell Biol; 2012; 109():357-78. PubMed ID: 22444152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine oral filaments in Paramecium: a biochemical and immunological analysis.
    Clerot J; Iftode F; Budin K; Jeanmaire-Wolf R; Coffe G; Fleury-Aubusson A
    J Eukaryot Microbiol; 2001; 48(2):234-45. PubMed ID: 12095113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila.
    Stemm-Wolf AJ; Meehl JB; Winey M
    J Cell Sci; 2013 Apr; 126(Pt 7):1659-71. PubMed ID: 23426847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basal body components exhibit differential protein dynamics during nascent basal body assembly.
    Pearson CG; Giddings TH; Winey M
    Mol Biol Cell; 2009 Feb; 20(3):904-14. PubMed ID: 19056680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena.
    Thazhath R; Liu C; Gaertig J
    Nat Cell Biol; 2002 Mar; 4(3):256-9. PubMed ID: 11862218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Septins stabilize mitochondria in Tetrahymena thermophila.
    Wloga D; Strzyzewska-Jówko I; Gaertig J; Jerka-Dziadosz M
    Eukaryot Cell; 2008 Aug; 7(8):1373-86. PubMed ID: 18586950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.