These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 13677491)

  • 1. Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression.
    Cedeño W; Agrafiotis DK
    J Comput Aided Mol Des; 2003; 17(2-4):255-63. PubMed ID: 13677491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature selection for structure-activity correlation using binary particle swarms.
    Agrafiotis DK; Cedeño W
    J Med Chem; 2002 Feb; 45(5):1098-107. PubMed ID: 11855990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational selection of training and test sets for the development of validated QSAR models.
    Golbraikh A; Shen M; Xiao Z; Xiao YD; Lee KH; Tropsha A
    J Comput Aided Mol Des; 2003; 17(2-4):241-53. PubMed ID: 13677490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel variable selection quantitative structure--property relationship approach based on the k-nearest-neighbor principle.
    Zheng W; Tropsha A
    J Chem Inf Comput Sci; 2000 Jan; 40(1):185-94. PubMed ID: 10661566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking of QSAR models for blood-brain barrier permeation.
    Konovalov DA; Coomans D; Deconinck E; Heyden YV
    J Chem Inf Model; 2007; 47(4):1648-56. PubMed ID: 17602606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors.
    Kauffman GW; Jurs PC
    J Chem Inf Comput Sci; 2001; 41(6):1553-60. PubMed ID: 11749582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of p38 mitogen-activated protein kinase inhibitors using the Catalyst HypoGen and k-nearest neighbor QSAR methods.
    Xiao Z; Varma S; Xiao YD; Tropsha A
    J Mol Graph Model; 2004 Oct; 23(2):129-38. PubMed ID: 15363455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. kappa Nearest neighbors QSAR modeling as a variational problem: theory and applications.
    Itskowitz P; Tropsha A
    J Chem Inf Model; 2005; 45(3):777-85. PubMed ID: 15921467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive quasiconformal kernel nearest neighbor classification.
    Peng J; Heisterkamp DR; Dai HK
    IEEE Trans Pattern Anal Mach Intell; 2004 May; 26(5):656-61. PubMed ID: 15460287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.
    Kovalishyn V; Tanchuk V; Charochkina L; Semenuta I; Prokopenko V
    J Mol Graph Model; 2012 Feb; 32():32-8. PubMed ID: 22023934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The global kernel k-means algorithm for clustering in feature space.
    Tzortzis GF; Likas AC
    IEEE Trans Neural Netw; 2009 Jul; 20(7):1181-94. PubMed ID: 19493848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic versus stepwise strategies for quantitative structure-activity relationship generation--how much effort may the mining for successful QSAR models take?
    Horvath D; Bonachera F; Solov'ev V; Gaudin C; Varnek A
    J Chem Inf Model; 2007; 47(3):927-39. PubMed ID: 17480052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial Activity of Imidazolium-Based Ionic Liquids Investigated by QSAR Modeling and Experimental Studies.
    Hodyna D; Kovalishyn V; Rogalsky S; Blagodatnyi V; Petko K; Metelytsia L
    Chem Biol Drug Des; 2016 Sep; 88(3):422-33. PubMed ID: 27086199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large margin nearest neighbor classifiers.
    Domeniconi C; Gunopulos D; Peng J
    IEEE Trans Neural Netw; 2005 Jul; 16(4):899-909. PubMed ID: 16121731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization.
    Nigsch F; Bender A; van Buuren B; Tissen J; Nigsch E; Mitchell JB
    J Chem Inf Model; 2006; 46(6):2412-22. PubMed ID: 17125183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling robust QSAR.
    Polanski J; Bak A; Gieleciak R; Magdziarz T
    J Chem Inf Model; 2006; 46(6):2310-8. PubMed ID: 17125174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormone receptor 1 antagonists.
    Li J; Li S; Lei B; Liu H; Yao X; Liu M; Gramatica P
    J Comput Chem; 2010 Apr; 31(5):973-85. PubMed ID: 19670228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.