BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 13678442)

  • 1. Ex vivo mechanical evaluation of carbonate apatite-collagen-grafted porous poly-L-lactic acid membrane in rabbit calvarial bone.
    Suh H; Song MJ; Ohata M; Kang YB; Tsutsumi S
    Tissue Eng; 2003 Aug; 9(4):635-43. PubMed ID: 13678442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bone response to calcium sulfate/poly L-lactic acid composite.
    Mamidwar S; Weiner M; Alexander H; Ricci J
    Implant Dent; 2008 Jun; 17(2):208-16. PubMed ID: 18545053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hydrolysis of poly(L-lactic acid) fibers and formation of low crystalline apatite on their surface by a biomimetic process].
    Yuan X; Mak AF; He F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):404-7. PubMed ID: 14564999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable ceramic-collagen composite implanted in rabbit tibiae.
    Suh H; Lee C
    ASAIO J; 1995; 41(3):M652-6. PubMed ID: 8573885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane.
    Suh H; Hwang YS; Lee JE; Han CD; Park JC
    Biomaterials; 2001 Feb; 22(3):219-30. PubMed ID: 11197497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration.
    Sui G; Yang X; Mei F; Hu X; Chen G; Deng X; Ryu S
    J Biomed Mater Res A; 2007 Aug; 82(2):445-54. PubMed ID: 17295252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of bone volume in guided bone augmentation by cell transplants derived from periosteum: an experimental study in rabbit calvarium bone.
    Miyamoto I; Tsuboi Y; Takahashi K; Hyon SH; Iizuka T
    Clin Oral Implants Res; 2004 Jun; 15(3):308-14. PubMed ID: 15142093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of thermoplastic poly(L-lactic acid) membranes for guided bone regeneration.
    Asano K; Matsuno T; Tabata Y; Satoh T
    Int J Oral Maxillofac Implants; 2013; 28(4):973-81. PubMed ID: 23869354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apatite-coated porous poly(lactic-co-glycolic acid) microspheres as an injectable bone substitute.
    Lee TJ; Kang SW; Bhang SH; Kang JM; Kim BS
    J Biomater Sci Polym Ed; 2010; 21(5):635-45. PubMed ID: 20338097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental study of artificial bone composite of bicoral, rhBMP-2 and PLA in repairing calvarial defects].
    Chen X; Mao T; Dai Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2003 Dec; 21(6):474-6. PubMed ID: 14732986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite).
    Kasuga T; Maeda H; Kato K; Nogami M; Hata K; Ueda M
    Biomaterials; 2003 Aug; 24(19):3247-53. PubMed ID: 12763452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration.
    Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC
    Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of poly(L-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration.
    Maeda H; Kasuga T; Hench LL
    Biomaterials; 2006 Mar; 27(8):1216-22. PubMed ID: 16143389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility.
    Hong Z; Zhang P; He C; Qiu X; Liu A; Chen L; Chen X; Jing X
    Biomaterials; 2005 Nov; 26(32):6296-304. PubMed ID: 15913758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification.
    Wu C; Ramaswamy Y; Boughton P; Zreiqat H
    Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on repair of critical calvarial defects with nano-hydroxyapatite/collagen/polylactic acid material compounded recombinant human bone morphogenetic protein 2 in rabbits].
    Chen P; Liu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1191-5. PubMed ID: 18069472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material.
    Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R
    J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds.
    Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ
    Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pore size of D, L-polylactic acid as bone repair material on bone regeneration.
    Zhang L; Jin AM; Guo ZM; Min SX; Quan DP; Lu ZJ
    Di Yi Jun Yi Da Xue Xue Bao; 2002 May; 22(5):423-6. PubMed ID: 12390703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.