BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 13678620)

  • 1. A model synapse that incorporates the properties of short- and long-term synaptic plasticity.
    Sargsyan AR; Melkonyan AA; Papatheodoropoulos C; Mkrtchian HH; Kostopoulos GK
    Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer model of field potential responses for the study of short-term plasticity in hippocampus.
    Sargsyan A; Melkonyan A; Mkrtchian H; Papatheodoropoulos C; Kostopoulos G
    J Neurosci Methods; 2004 May; 135(1-2):175-91. PubMed ID: 15020102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus.
    Le Ray D; Fernández De Sevilla D; Belén Porto A; Fuenzalida M; Buño W
    Hippocampus; 2004; 14(8):1011-25. PubMed ID: 15390171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus.
    Lysetskiy M; Földy C; Soltesz I
    Hippocampus; 2005; 15(6):691-6. PubMed ID: 15986406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus.
    Lauri SE; Palmer M; Segerstrale M; Vesikansa A; Taira T; Collingridge GL
    Neuropharmacology; 2007 Jan; 52(1):1-11. PubMed ID: 16919682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocytes potentiate transmitter release at single hippocampal synapses.
    Perea G; Araque A
    Science; 2007 Aug; 317(5841):1083-6. PubMed ID: 17717185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus.
    Normann C; Clark K
    Brain Res; 2005 Mar; 1037(1-2):187-93. PubMed ID: 15777768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions.
    Nieus T; Sola E; Mapelli J; Saftenku E; Rossi P; D'Angelo E
    J Neurophysiol; 2006 Feb; 95(2):686-99. PubMed ID: 16207782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic plasticity in the CA1 area of the hippocampus of scrapie-infected mice.
    Johnston AR; Fraser JR; Jeffrey M; MacLeod N
    Neurobiol Dis; 1998 Sep; 5(3):188-95. PubMed ID: 9848090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term synaptic plasticity in hippocampal feedback inhibitory networks.
    Pelletier JG; Lacaille JC
    Prog Brain Res; 2008; 169():241-50. PubMed ID: 18394478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses.
    Cabezas C; Buño W
    J Neurophysiol; 2006 May; 95(5):3024-34. PubMed ID: 16436482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional differences in GABAergic modulation for TEA-induced synaptic plasticity in rat hippocampal CA1, CA3 and dentate gyrus.
    Suzuki E; Okada T
    Neurosci Res; 2007 Oct; 59(2):183-90. PubMed ID: 17669533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter metabolism as a mechanism of synaptic plasticity: a modeling study.
    Axmacher N; Stemmler M; Engel D; Draguhn A; Ritz R
    J Neurophysiol; 2004 Jan; 91(1):25-39. PubMed ID: 13679396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of changes in presynaptic function during long-term synaptic plasticity.
    Zakharenko SS; Zablow L; Siegelbaum SA
    Nat Neurosci; 2001 Jul; 4(7):711-7. PubMed ID: 11426227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia.
    Steullet P; Neijt HC; Cuénod M; Do KQ
    Neuroscience; 2006 Feb; 137(3):807-19. PubMed ID: 16330153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the variability of glutamatergic synaptic responses to presynaptic trains in rat hippocampal pyramidal neurons.
    Canepari M; Treves A
    Network; 2001 May; 12(2):175-98. PubMed ID: 11405421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices.
    Stewart MG; Medvedev NI; Popov VI; Schoepfer R; Davies HA; Murphy K; Dallérac GM; Kraev IV; Rodríguez JJ
    Eur J Neurosci; 2005 Jun; 21(12):3368-78. PubMed ID: 16026474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic spine changes associated with hippocampal long-term synaptic plasticity.
    Engert F; Bonhoeffer T
    Nature; 1999 May; 399(6731):66-70. PubMed ID: 10331391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.