BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 13678767)

  • 1. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone.
    Rubin MA; Jasiuk I; Taylor J; Rubin J; Ganey T; Apkarian RP
    Bone; 2003 Sep; 33(3):270-82. PubMed ID: 13678767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The TEM characterization of the lamellar structure of osteoporotic human trabecular bone.
    Rubin MA; Jasiuk I
    Micron; 2005; 36(7-8):653-64. PubMed ID: 16198582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone.
    Rubin MA; Rubin J; Jasiuk I
    Bone; 2004 Jul; 35(1):11-20. PubMed ID: 15207736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal organization in rat bone lamellae.
    Weiner S; Arad T; Traub W
    FEBS Lett; 1991 Jul; 285(1):49-54. PubMed ID: 2065782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.
    Busse B; Hahn M; Soltau M; Zustin J; Püschel K; Duda GN; Amling M
    Bone; 2009 Dec; 45(6):1034-43. PubMed ID: 19679206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone.
    Bini F; Pica A; Marinozzi A; Marinozzi F
    PLoS One; 2017; 12(12):e0189041. PubMed ID: 29220377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons.
    Arsenault AL
    Bone Miner; 1989 May; 6(2):165-77. PubMed ID: 2765707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructural analysis of trabecular bone.
    Hong SI; Hong SK; Kohn DH
    J Mater Sci Mater Med; 2009 Jul; 20(7):1419-26. PubMed ID: 19266266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrastructural organization of the human lamellar bone tissue mineral component in aged and elderly].
    Denisov-Nikol'skiĭ IuI; Zhilkin BA; Doktorov AA; Matveĭchuk IV
    Morfologiia; 2002; 122(5):79-83. PubMed ID: 12530314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite.
    Moradian-Oldak J; Weiner S; Addadi L; Landis WJ; Traub W
    Connect Tissue Res; 1991; 25(3-4):219-28. PubMed ID: 2060300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy on human trabecular bone from an old woman with osteoporotic fractures.
    Hassenkam T; Jørgensen HL; Pedersen MB; Kourakis AH; Simonsen L; Lauritzen JB
    Micron; 2005; 36(7-8):681-7. PubMed ID: 16182551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis.
    Wenk HR; Heidelbach F
    Bone; 1999 Apr; 24(4):361-9. PubMed ID: 10221548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy.
    Kafantari H; Kounadi E; Fatouros M; Milonakis M; Tzaphlidou M
    Bone; 2000 Apr; 26(4):349-53. PubMed ID: 10719277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer.
    Sekita A; Matsugaki A; Nakano T
    Bone; 2017 Apr; 97():83-93. PubMed ID: 28069516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite.
    Wang Y; Azaïs T; Robin M; Vallée A; Catania C; Legriel P; Pehau-Arnaudet G; Babonneau F; Giraud-Guille MM; Nassif N
    Nat Mater; 2012 Jul; 11(8):724-33. PubMed ID: 22751179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.