These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 13678767)

  • 21. Ultrastructural properties of bone mineral of control and tiludronate-treated osteoporotic rat.
    Rohanizadeh R; LeGeros RZ; Bohic S; Pilet P; Barbier A; Daculsi G
    Calcif Tissue Int; 2000 Oct; 67(4):330-6. PubMed ID: 11000348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of collagen in bone structure: an image processing approach.
    Tzaphlidou M
    Micron; 2005; 36(7-8):593-601. PubMed ID: 16209926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of inflammation-mediated osteopenia (IMO) on the structure of rabbit bone and skin collagen fibrils.
    Kounadi E; Fountos G; Tzaphlidou M
    Connect Tissue Res; 1998; 37(1-2):69-76. PubMed ID: 9643648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron microscope studies of crystal-collagen relationships in bone. IV. The occurrence of crystals within collagen fibrils.
    SHELDON H; ROBINSON RA
    J Biophys Biochem Cytol; 1957 Nov; 3(6):1011-6. PubMed ID: 13481032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycosylation of human bone collagen I in relation to lysylhydroxylation and fibril diameter.
    Bätge B; Winter C; Notbohm H; Acil Y; Brinckmann J; Müller PK
    J Biochem; 1997 Jul; 122(1):109-15. PubMed ID: 9276678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy.
    Jiang H; Ramunno-Johnson D; Song C; Amirbekian B; Kohmura Y; Nishino Y; Takahashi Y; Ishikawa T; Miao J
    Phys Rev Lett; 2008 Jan; 100(3):038103. PubMed ID: 18233041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of apatite crystals in human woven bone.
    Su X; Sun K; Cui FZ; Landis WJ
    Bone; 2003 Feb; 32(2):150-62. PubMed ID: 12633787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructural aspects of disintegrating collagen fibrils in osteoporotic bones.
    Salomon CD; Volpin G
    Isr J Med Sci; 1971 Mar; 7(3):485-8. PubMed ID: 5567524
    [No Abstract]   [Full Text] [Related]  

  • 32. Origin of mineral crystal growth in collagen fibrils.
    Traub W; Arad T; Weiner S
    Matrix; 1992 Aug; 12(4):251-5. PubMed ID: 1435508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone structure: from angstroms to microns.
    Weiner S; Traub W
    FASEB J; 1992 Feb; 6(3):879-85. PubMed ID: 1740237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure.
    Matsugaki A; Aramoto G; Ninomiya T; Sawada H; Hata S; Nakano T
    Biomaterials; 2015 Jan; 37():134-43. PubMed ID: 25453944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy.
    Boothroyd B
    Clin Orthop Relat Res; 1975; (106):290-310. PubMed ID: 165025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid crystalline assemblies of collagen in bone and in vitro systems.
    Giraud-Guille MM; Besseau L; Martin R
    J Biomech; 2003 Oct; 36(10):1571-9. PubMed ID: 14499304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle.
    Höhling HJ; Arnold S; Barckhaus RH; Plate U; Wiesmann HP
    Connect Tissue Res; 1995; 33(1-3):171-8. PubMed ID: 7554950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution electron microscopy of nonstoichiometric apatite crystals.
    Nelson DG; Barry JC
    Anat Rec; 1989 Jun; 224(2):265-76. PubMed ID: 2672890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.