These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 13678793)

  • 1. Study of the biodegradation and in vivo biocompatibility of novel biomaterials.
    Fulzele SV; Satturwar PM; Dorle AK
    Eur J Pharm Sci; 2003 Sep; 20(1):53-61. PubMed ID: 13678793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer.
    Satturwar PM; Fulzele SV; Dorle AK
    AAPS PharmSciTech; 2003 Oct; 4(4):E55. PubMed ID: 15198550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release.
    Fulzele SV; Satturwar PM; Dorle AK
    J Pharm Sci; 2007 Jan; 96(1):132-44. PubMed ID: 16960824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomed Mater Res; 1999 Aug; 46(2):236-44. PubMed ID: 10380002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation studies of rosin-based polymers.
    Satturwar PM; Mandaogade PM; Darwhekar GN; Fulzele SV; Joshi SB; Dorle AK
    Drug Dev Ind Pharm; 2003 Jul; 29(6):669-77. PubMed ID: 12889785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of novel rosin-based biomaterials for pharmaceutical coating.
    Fulzele SV; Satturwar PM; Dorle AK
    AAPS PharmSciTech; 2002; 3(4):E31. PubMed ID: 12916925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicobiological properties and biocompatibility of biodegradable poly(oxalate-co-oxamide).
    Song Y; Kwon J; Kim B; Jeon Y; Khang G; Lee D
    J Biomed Mater Res A; 2011 Sep; 98(4):517-26. PubMed ID: 21681944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models.
    Zange R; Li Y; Kissel T
    J Control Release; 1998 Dec; 56(1-3):249-58. PubMed ID: 9801448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
    Wu XS; Wang N
    J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo.
    Sandor M; Harris J; Mathiowitz E
    Biomaterials; 2002 Nov; 23(22):4413-23. PubMed ID: 12219832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid).
    Ara M; Watanabe M; Imai Y
    Biomaterials; 2002 Jun; 23(12):2479-83. PubMed ID: 12033595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants.
    Ramchandani M; Robinson D
    J Control Release; 1998 Jul; 54(2):167-75. PubMed ID: 9724903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of poly (DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers--effect of size and shape of the fillers--.
    Tsunoda M
    Dent Mater J; 2003 Sep; 22(3):371-82. PubMed ID: 14621002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo degradation of poly(L: -lactide-co-glycolide) films and scaffolds.
    Pamula E; Menaszek E
    J Mater Sci Mater Med; 2008 May; 19(5):2063-70. PubMed ID: 17968505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro.
    Rohman G; Pettit JJ; Isaure F; Cameron NR; Southgate J
    Biomaterials; 2007 May; 28(14):2264-74. PubMed ID: 17296219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.
    Bittner B; Mäder K; Kroll C; Borchert HH; Kissel T
    J Control Release; 1999 May; 59(1):23-32. PubMed ID: 10210719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.