BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 13679362)

  • 1. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport.
    Dawson M; Wirtz D; Hanes J
    J Biol Chem; 2003 Dec; 278(50):50393-401. PubMed ID: 13679362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model for the Transient Subdiffusive Behavior of Particles in Mucus.
    Ernst M; John T; Guenther M; Wagner C; Schaefer UF; Lehr CM
    Biophys J; 2017 Jan; 112(1):172-179. PubMed ID: 28076809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering mucus rheology to "solidify" human mucus at the nanoscale.
    Lai SK; Wang YY; Cone R; Wirtz D; Hanes J
    PLoS One; 2009; 4(1):e4294. PubMed ID: 19173002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscopic Interfacial Hydrogel Viscoelasticity Revealed from Comparison of Macroscopic and Microscopic Rheology.
    Schmidt RF; Kiefer H; Dalgliesh R; Gradzielski M; Netz RR
    Nano Lett; 2024 Apr; 24(16):4758-65. PubMed ID: 38591912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The viscoelasticity of high concentration monoclonal antibodies using particle tracking microrheology.
    Lewis CM; Heise CT; Harasimiuk N; Tovey J; Lu JR; Waigh TA
    APL Bioeng; 2024 Jun; 8(2):026105. PubMed ID: 38680995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of mucus modulation by
    Meziu E; Shehu K; Koch M; Schneider M; Kraegeloh A
    Int J Pharm X; 2023 Dec; 6():100212. PubMed ID: 37771516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations.
    Garner RM; Molines AT; Theriot JA; Chang F
    Biophys J; 2023 Mar; 122(5):767-783. PubMed ID: 36739478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical Methods for Microrheology of Airway Mucus with Extreme Heterogeneity.
    Caughman N; Papanikolas M; Markovetz M; Freeman R; Hill DB; Forest MG; Lysy M
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-heterogeneity metrics for diffusion in soft matter.
    Mellnik J; Vasquez PA; McKinley SA; Witten J; Hill DB; Forest MG
    Soft Matter; 2014 Oct; 10(39):7781-96. PubMed ID: 25144347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movements of HIV-virions in human cervical mucus.
    Boukari H; Brichacek B; Stratton P; Mahoney SF; Lifson JD; Margolis L; Nossal R
    Biomacromolecules; 2009 Sep; 10(9):2482-8. PubMed ID: 19711976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy.
    Röding M; Billeter M
    J Microsc; 2018 Apr; ():. PubMed ID: 29676793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle.
    Hendriks FC; Meirer F; Kubarev AV; Ristanović Z; Roeffaers MBJ; Vogt ETC; Bruijnincx PCA; Weckhuysen BM
    J Am Chem Soc; 2017 Oct; 139(39):13632-13635. PubMed ID: 28902508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking Particle Tracking into Practice by Novel Software and Screening Approach: Case-Study of Oral Lipid Nanocarriers.
    Plaza-Oliver M; Cano EL; Arroyo-Jimenez MM; Gámez M; Lozano-López MV; Santander-Ortega MJ
    Pharmaceutics; 2021 Mar; 13(3):. PubMed ID: 33802226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
    Lai SK; Wang YY; Hanes J
    Adv Drug Deliv Rev; 2009 Feb; 61(2):158-71. PubMed ID: 19133304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles.
    Suk JS; Boylan NJ; Trehan K; Tang BC; Schneider CS; Lin JM; Boyle MP; Zeitlin PL; Lai SK; Cooper MJ; Hanes J
    Mol Ther; 2011 Nov; 19(11):1981-9. PubMed ID: 21829177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier.
    Wang YY; Lai SK; Suk JS; Pace A; Cone R; Hanes J
    Angew Chem Int Ed Engl; 2008; 47(50):9726-9. PubMed ID: 18979480
    [No Abstract]   [Full Text] [Related]  

  • 18. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles.
    Suk JS; Lai SK; Wang YY; Ensign LM; Zeitlin PL; Boyle MP; Hanes J
    Biomaterials; 2009 May; 30(13):2591-7. PubMed ID: 19176245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
    Lai SK; O'Hanlon DE; Harrold S; Man ST; Wang YY; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1482-7. PubMed ID: 17244708
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.