These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 13679400)

  • 1. Neural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation.
    Bristol AS; Marinesco S; Carew TJ
    J Neurophysiol; 2004 Feb; 91(2):678-92. PubMed ID: 13679400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural circuit of tail-elicited siphon withdrawal in Aplysia. I. Differential lateralization of sensitization and dishabituation.
    Bristol AS; Sutton MA; Carew TJ
    J Neurophysiol; 2004 Feb; 91(2):666-77. PubMed ID: 13679401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic modulation in aplysia. II. Cellular and behavioral consequences of increased serotonergic tone.
    Marinesco S; Wickremasinghe N; Kolkman KE; Carew TJ
    J Neurophysiol; 2004 Oct; 92(4):2487-96. PubMed ID: 15140904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential role of inhibition in habituation of two independent afferent pathways to a common motor output.
    Bristol AS; Carew TJ
    Learn Mem; 2005; 12(1):52-60. PubMed ID: 15647595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of learning and memory in Aplysia. III. Central neuronal correlates.
    Nolen TG; Marcus EA; Carew TJ
    J Neurosci; 1987 Jan; 7(1):144-53. PubMed ID: 3806191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia.
    Marinesco S; Wickremasinghe N; Carew TJ
    J Neurosci; 2006 Dec; 26(49):12682-93. PubMed ID: 17151271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia.
    Fitzgerald K; Carew TJ
    J Neurosci; 1991 Aug; 11(8):2510-8. PubMed ID: 1869928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cellular analysis of inhibition in the siphon withdrawal reflex of Aplysia.
    Wright WG; Marcus EA; Carew TJ
    J Neurosci; 1991 Aug; 11(8):2498-509. PubMed ID: 1869927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dishabituation and sensitization emerge as separate processes during development in Aplysia.
    Rankin CH; Carew TJ
    J Neurosci; 1988 Jan; 8(1):197-211. PubMed ID: 3339408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock.
    Glanzman DL; Mackey SL; Hawkins RD; Dyke AM; Lloyd PE; Kandel ER
    J Neurosci; 1989 Dec; 9(12):4200-13. PubMed ID: 2592997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonergic modulation in aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli.
    Marinesco S; Kolkman KE; Carew TJ
    J Neurophysiol; 2004 Oct; 92(4):2468-86. PubMed ID: 15140903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Habituation and dishabituation mediated by the peripheral and central neural circuits of the siphon of Aplysia.
    Lukowiak K; Jacklet J
    J Neurobiol; 1975 Mar; 6(2):183-200. PubMed ID: 1185181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitization and dishabituation of swim induction in the leech Hirudo medicinalis: role of serotonin and cyclic AMP.
    Zaccardi ML; Traina G; Cataldo E; Brunelli M
    Behav Brain Res; 2004 Aug; 153(2):317-26. PubMed ID: 15265626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNS control over gill reflex behaviors in Aplysia: satiation causes an increase in the suppressive control in older but not young animals.
    Lukowiak K
    J Neurobiol; 1980 Nov; 11(6):591-611. PubMed ID: 7441242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tail shock produces inhibition as well as sensitization of the siphon-withdrawal reflex of Aplysia: possible behavioral role for presynaptic inhibition mediated by the peptide Phe-Met-Arg-Phe-NH2.
    Mackey SL; Glanzman DL; Small SA; Dyke AM; Kandel ER; Hawkins RD
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8730-4. PubMed ID: 3120198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of habituation in Aplysia: contribution of heterosynaptic pathways in habituation of the gill-withdrawal reflex.
    Goldberg JI; Lukowiak K
    J Neurobiol; 1984 Nov; 15(6):395-411. PubMed ID: 6097642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional uncoupling of inhibitory interneurons plays an important role in short-term sensitization of Aplysia gill and siphon withdrawal reflex.
    Trudeau LE; Castellucci VF
    J Neurosci; 1993 May; 13(5):2126-35. PubMed ID: 8478692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed-onset sensitization emerges after dishabituation in developing Aplysia.
    Wright WG; McCance EF; Lu T; Carew TJ
    Behav Neural Biol; 1992 Mar; 57(2):170-4. PubMed ID: 1586356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between dishabituation, sensitization, and inhibition of the gill- and siphon-withdrawal reflex in Aplysia californica: effects of response measure, test time, and training stimulus.
    Hawkins RD; Cohen TE; Greene W; Kandel ER
    Behav Neurosci; 1998 Feb; 112(1):24-38. PubMed ID: 9517813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex.
    Antonov I; Kandel ER; Hawkins RD
    J Neurosci; 1999 Dec; 19(23):10438-50. PubMed ID: 10575041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.