These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 13680211)
1. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Balla MS; Bowie JH; Separovic F Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211 [TBL] [Abstract][Full Text] [Related]
2. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
3. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
4. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Marcotte I; Wegener KL; Lam YH; Chia BC; de Planque MR; Bowie JH; Auger M; Separovic F Chem Phys Lipids; 2003 Jan; 122(1-2):107-20. PubMed ID: 12598042 [TBL] [Abstract][Full Text] [Related]
5. Membrane interactions of antimicrobial peptides from Australian frogs. Fernandez DI; Gehman JD; Separovic F Biochim Biophys Acta; 2009 Aug; 1788(8):1630-8. PubMed ID: 19013126 [TBL] [Abstract][Full Text] [Related]
6. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
7. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption. Sani MA; Lee TH; Aguilar MI; Separovic F Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2277-89. PubMed ID: 26079051 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271 [TBL] [Abstract][Full Text] [Related]
9. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. Sani MA; Le Brun AP; Separovic F Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183204. PubMed ID: 31981588 [TBL] [Abstract][Full Text] [Related]
10. Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Mechler A; Praporski S; Atmuri K; Boland M; Separovic F; Martin LL Biophys J; 2007 Dec; 93(11):3907-16. PubMed ID: 17704161 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Peptide Structures: From Model Membranes to Live Cells. Sani MA; Separovic F Chemistry; 2018 Jan; 24(2):286-291. PubMed ID: 29068097 [TBL] [Abstract][Full Text] [Related]
12. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs. Lee TH; Heng C; Separovic F; Aguilar MI Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995 [TBL] [Abstract][Full Text] [Related]
13. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Priyadarshini D; Ivica J; Separovic F; de Planque MRR Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479 [TBL] [Abstract][Full Text] [Related]
16. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
17. Effect of phosphatidylcholine bilayer thickness and molecular order on the binding of the antimicrobial peptide maculatin 1.1. Lee TH; Sani MA; Overall S; Separovic F; Aguilar MI Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):300-309. PubMed ID: 29030245 [TBL] [Abstract][Full Text] [Related]
18. One pathogen two stones: are Australian tree frog antimicrobial peptides synergistic against human pathogens? Sani MA; Carne S; Overall SA; Poulhazan A; Separovic F Eur Biophys J; 2017 Oct; 46(7):639-646. PubMed ID: 28478484 [TBL] [Abstract][Full Text] [Related]
19. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Sani MA; Whitwell TC; Separovic F Biochim Biophys Acta; 2012 Feb; 1818(2):205-11. PubMed ID: 21801711 [TBL] [Abstract][Full Text] [Related]
20. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]