These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 1368079)

  • 1. Combined chemical and mechanical processes for the disruption of bacteria.
    Harrison ST; Dennis JS; Chase HA
    Bioseparation; 1991; 2(2):95-105. PubMed ID: 1368079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The disruption of Alcaligenes eutrophus by high pressure homogenisation: key factors involved in the process.
    Harrison ST; Chase HA; Dennis JS
    Bioseparation; 1991; 2(3):155-66. PubMed ID: 1368082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
    Balasundaram B; Harrison ST
    J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.
    Balasundaram B; Harrison ST
    Biotechnol Bioeng; 2006 Jun; 94(2):303-11. PubMed ID: 16570316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microscale yeast cell disruption technique for integrated process development strategies.
    Wenger MD; DePhillips P; Bracewell DG
    Biotechnol Prog; 2008; 24(3):606-14. PubMed ID: 18410155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of a recombinant yeast for the release of beta-galactosidase.
    Garrido F; Banerjee UC; Chisti Y; Moo-Young M
    Bioseparation; 1994 Oct; 4(5):319-28. PubMed ID: 7765495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly(R-hydroxybutyrate) recovery.
    Khosravi-Darani K; Vasheghani-Farahani E; Shojaosadati SA; Yamini Y
    Biotechnol Prog; 2004; 20(6):1757-65. PubMed ID: 15575709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.
    Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E
    J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical treatment of Escherichia coli. II. Direct extraction of recombinant protein from cytoplasmic inclusion bodies in intact cells.
    Falconer RJ; O'Neill BK; Middelberg AP
    Biotechnol Bioeng; 1998 Feb; 57(4):381-6. PubMed ID: 10099214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile evaluation of cell disruption efficiency using pH-controlled fluorescence resonance energy transfer.
    Kim YS; Cha HJ
    Biotechnol Prog; 2008; 24(5):1186-90. PubMed ID: 19194931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of smooth Salmonella cholerae-suis var kunzendorf field strains to antibody complement under various conditions.
    Griffith RW; Kramer TT
    Am J Vet Res; 1982 Aug; 43(8):1413-7. PubMed ID: 6808877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mechanical stress on biofilms challenged by different chemicals.
    Simões M; Pereira MO; Vieira MJ
    Water Res; 2005 Dec; 39(20):5142-52. PubMed ID: 16289205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of glycol ethers for selective release of periplasmic proteins from Gram-negative bacteria.
    Allen JR; Patkar AY; Frank TC; Donate FA; Chiu YC; Shields JE; Gustafson ME
    Biotechnol Prog; 2007; 23(5):1163-70. PubMed ID: 17760459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing recombinant human lysozyme extraction and cation exchange adsorption.
    Wilken LR; Nikolov ZL
    Biotechnol Prog; 2006; 22(3):745-52. PubMed ID: 16739958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitisation of Escherichia coli to antibacterial peptides and enzymes by high-pressure homogenisation.
    Diels AM; De Taeye J; Michiels CW
    Int J Food Microbiol; 2005 Nov; 105(2):165-75. PubMed ID: 16126294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing alkaline lysis for DNA plasmid recovery.
    Clemson M; Kelly WJ
    Biotechnol Appl Biochem; 2003 Jun; 37(Pt 3):235-44. PubMed ID: 12611593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysis of Vibrio succinogenes by ethylenediamine-tetraacetic acid or lysozyme.
    Wolin MJ
    J Bacteriol; 1966 May; 91(5):1781-6. PubMed ID: 4957020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis.
    Ren X; Yu D; Yu L; Gao G; Han S; Feng Y
    J Biotechnol; 2007 May; 129(4):668-73. PubMed ID: 17399834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.