These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 1368079)

  • 21. Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2.
    Moosavi-Movahedi AA; Pirzadeh P; Hashemnia S; Ahmadian S; Hemmateenejad B; Amani M; Saboury AA; Ahmad F; Shamsipur M; Hakimelahi GH; Tsai FY; Alijanvand HH; Yousefi R
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):55-61. PubMed ID: 17616361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic mechanism studies of the soluble hydrogenase from Alcaligenes eutrophus H16.
    Keefe RG; Axley MJ; Harabin AL
    Arch Biochem Biophys; 1995 Mar; 317(2):449-56. PubMed ID: 7893162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media.
    Gross MJ; Logan BE
    Appl Environ Microbiol; 1995 May; 61(5):1750-6. PubMed ID: 7646012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of morphological response of red cells in a sucrose solution.
    Rudenko SV
    Blood Cells Mol Dis; 2009; 42(3):252-61. PubMed ID: 19249232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure.
    Nakimbugwe D; Masschalck B; Anim G; Michiels CW
    Int J Food Microbiol; 2006 Oct; 112(1):19-25. PubMed ID: 16843561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sludge as source of energy and revenue.
    Onyeche TI
    Water Sci Technol; 2004; 50(9):197-204. PubMed ID: 15581013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relation between cell disruption conditions, cell debris particle size, and inclusion body release.
    Van Hee P; Middelberg AP; Van Der Lans RG; Van Der Wielen LA
    Biotechnol Bioeng; 2004 Oct; 88(1):100-10. PubMed ID: 15449302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pilot- and process-scale techniques for cell disruption.
    Schütte H; Kula MR
    Biotechnol Appl Biochem; 1990 Dec; 12(6):599-620. PubMed ID: 2092722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of divalent cations in the rigid layer of morphological and conditional mutant of Klebsiella pneumoniae Mir M7.
    Fontana R; Satta G; Calegari L
    Ann Microbiol (Paris); 1974 Sep; 125 B(2):275-92. PubMed ID: 4218462
    [No Abstract]   [Full Text] [Related]  

  • 31. Chemical treatment of Escherichia coli: 1. Extraction of intracellular protein from uninduced cells.
    Falconer RJ; O'Neill BK; Middelberg AP
    Biotechnol Bioeng; 1997 Mar; 53(5):453-8. PubMed ID: 18634040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysis of nitrofurantoin-resistant strain of Vibrio el tor.
    Haldar S; Tiwari R; Bhattacharyya A; Basu A; Chatterjee GC
    Folia Microbiol (Praha); 1983; 28(1):22-7. PubMed ID: 6403416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced disruption of Candida utilis using enzymatic pretreatment and high-pressure homogenization.
    Baldwin CV; Robinson CW
    Biotechnol Bioeng; 1994 Jan; 43(1):46-56. PubMed ID: 18613309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lysis of gram-negative organisms and the role of versene.
    REPASKE R
    Biochim Biophys Acta; 1958 Nov; 30(2):225-32. PubMed ID: 13607436
    [No Abstract]   [Full Text] [Related]  

  • 35. High pressure disruption of yeast cells: The use of scale down operations for the prediction of protein release and cell debris size distribution.
    Siddiqi SF; Titchener-Hooker NJ; Shamlou PA
    Biotechnol Bioeng; 1997 Aug; 55(4):642-9. PubMed ID: 18636574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An overview of cell disruption methods for intracellular biomolecules recovery.
    Gomes TA; Zanette CM; Spier MR
    Prep Biochem Biotechnol; 2020; 50(7):635-654. PubMed ID: 32074000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial cell disruption: a key unit operation in the recovery of intracellular products.
    Harrison ST
    Biotechnol Adv; 1991; 9(2):217-40. PubMed ID: 14548738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of particle size distribution changes occurring during high-pressure disruption of bakers' yeast.
    Siddiqi SF; Titchener-Hooker NJ; Shamlou PA
    Biotechnol Bioeng; 1996 Apr; 50(2):145-50. PubMed ID: 18626931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of experiments-based high-throughput strategy for development and optimization of efficient cell disruption protocols.
    Glauche F; Pilarek M; Bournazou MNC; Grunzel P; Neubauer P
    Eng Life Sci; 2017 Nov; 17(11):1166-1172. PubMed ID: 32624744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Process-scale disruption of microorganisms.
    Middelberg AP
    Biotechnol Adv; 1995; 13(3):491-551. PubMed ID: 14536098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.