These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1368141)

  • 1. Phosphonate utilization by bacteria in the presence of alternative phosphorus sources.
    Schowanek D; Verstraete W
    Biodegradation; 1990; 1(1):43-53. PubMed ID: 1368141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The widespread capability of methylphosphonate utilization in filamentous cyanobacteria and its ecological significance.
    Zhao L; Lin LZ; Chen MY; Teng WK; Zheng LL; Peng L; Lv J; Brand JJ; Hu CX; Han BP; Song LR; Shu WS
    Water Res; 2022 Jun; 217():118385. PubMed ID: 35405550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.
    Ermakova IT; Shushkova TV; Sviridov AV; Zelenkova NF; Vinokurova NG; Baskunov BP; Leontievsky AA
    Arch Microbiol; 2017 Jul; 199(5):665-675. PubMed ID: 28184965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria.
    Futamata H; Harayama S; Watanabe K
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):248-53. PubMed ID: 11330722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites.
    Daughton CG; Cook AM; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):605-9. PubMed ID: 453832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate starvation induces uptake of glyphosate by Pseudomonas sp. strain PG2982.
    Fitzgibbon J; Braymer HD
    Appl Environ Microbiol; 1988 Jul; 54(7):1886-8. PubMed ID: 2458066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus.
    Lenartowicz P; Kafarski P; Lipok J
    Biodegradation; 2015 Feb; 26(1):65-76. PubMed ID: 25385070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.
    Zboińska E; Lejczak B; Kafarski P
    Appl Environ Microbiol; 1992 Sep; 58(9):2993-9. PubMed ID: 1444412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source.
    Rezakhani L; Motesharezadeh B; Tehrani MM; Etesami H; Mirseyed Hosseini H
    Ecotoxicol Environ Saf; 2019 May; 173():504-513. PubMed ID: 30802739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1.
    Kertesz M; Elgorriaga A; Amrhein N
    Biodegradation; 1991; 2(1):53-9. PubMed ID: 1368477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced utilization of phosphonate and phosphite by Klebsiella aerogenes.
    Imazu K; Tanaka S; Kuroda A; Anbe Y; Kato J; Ohtake H
    Appl Environ Microbiol; 1998 Oct; 64(10):3754-8. PubMed ID: 9758795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha-fluorinated phosphonates as substrate mimics for glucose 6-phosphate dehydrogenase: the CHF stereochemistry matters.
    Berkowitz DB; Bose M; Pfannenstiel TJ; Doukov T
    J Org Chem; 2000 Jul; 65(15):4498-508. PubMed ID: 10959850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.