These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1368142)

  • 41. Microbial desulfonation.
    Cook AM; Laue H; Junker F
    FEMS Microbiol Rev; 1998 Dec; 22(5):399-419. PubMed ID: 9990724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase.
    Pati SG; Kohler HP; Bolotin J; Parales RE; Hofstetter TB
    Environ Sci Technol; 2014 Sep; 48(18):10750-9. PubMed ID: 25101486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol.
    Vogt C; Simon D; Alfreider A; Babel W
    Environ Toxicol Chem; 2004 Feb; 23(2):265-70. PubMed ID: 14982371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway.
    Davis JK; He Z; Somerville CC; Spain JC
    Arch Microbiol; 1999 Nov; 172(5):330-9. PubMed ID: 10550475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate-ester, sulfonates and amino sulfonates.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1985 Aug; 404(4):293-9. PubMed ID: 4059020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1.
    Kukor JJ; Olsen RH
    J Bacteriol; 1991 Aug; 173(15):4587-94. PubMed ID: 1856161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissimilation of the C2 sulfonates.
    Cook AM; Denger K
    Arch Microbiol; 2002 Dec; 179(1):1-6. PubMed ID: 12471498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1.
    Pujar NK; Premakshi HG; Laad S; Pattar SV; Mirjankar M; Kamanavalli CM
    World J Microbiol Biotechnol; 2018 Jul; 34(8):112. PubMed ID: 29980862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate.
    Altenschmidt U; Fuchs G
    Arch Microbiol; 1991; 156(2):152-8. PubMed ID: 1781729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uptake of 4-toluene sulfonate by Comamonas testosteroni T-2.
    Locher HH; Poolman B; Cook AM; Konings WN
    J Bacteriol; 1993 Feb; 175(4):1075-80. PubMed ID: 8432701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT.
    Haigler BE; Nishino SF; Spain JC
    J Bacteriol; 1994 Jun; 176(11):3433-7. PubMed ID: 8195105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioavailability of water-polluting sulfonoaromatic compounds.
    Ruff J; Hitzler T; Rein U; Ritter A; Cook AM
    Appl Microbiol Biotechnol; 1999 Sep; 52(3):446-50. PubMed ID: 10531657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of fluorobenzene by Rhizobiales strain F11 via ortho cleavage of 4-fluorocatechol and catechol.
    Carvalho MF; Ferreira MI; Moreira IS; Castro PM; Janssen DB
    Appl Environ Microbiol; 2006 Nov; 72(11):7413-7. PubMed ID: 16980423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Microflora of active ooze participating in the decomposition of sulfanilic acid].
    Orshanskaia FB; Arkad'eva AZ; Kozlova EI
    Mikrobiologiia; 1975; 44(1):160-2. PubMed ID: 808686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Aniline as a single carbon, nitrogen, and energy source for Alcaligenes faecalis].
    Surovtseva EG; Vol'nova AI
    Mikrobiologiia; 1980; 49(1):49-53. PubMed ID: 7392997
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Cloning and expression of catA gene from Pseudomonas putida ND6 and study on the catechol cleavage pathway].
    Zhao HB; Chen W; Cai BL
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):387-91. PubMed ID: 17672292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31.
    Tropel D; Meyer C; Armengaud J; Jouanneau Y
    Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of benzene 1,3-disulfonate by a mixed bacterial culture.
    Contzen M; Wittich RM; Knackmuss HJ; Stolz A
    FEMS Microbiol Lett; 1996 Feb; 136(1):45-50. PubMed ID: 8919454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methylcatechol 1,2-dioxygenase of Rhodococcus opacus 6a is a new type of the catechol-cleaving enzyme.
    Solyanikova IP; Konovalova EI; Golovleva LA
    Biochemistry (Mosc); 2009 Sep; 74(9):994-1001. PubMed ID: 19916910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of alkyl benzene sulfonate by Pseudomonas species.
    Horvath RS; Koft BW
    Appl Microbiol; 1972 Feb; 23(2):407-14. PubMed ID: 5017680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.