These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1368165)

  • 1. Protein/enzyme inactivation during different chromatographic methods of separation.
    Sadana A; Raju RR
    Bioseparation; 1990; 1(2):119-31. PubMed ID: 1368165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of proteins and other biological macromolecules during chromatographic methods of bioseparation.
    Sadana A
    Bioseparation; 1992; 3(2-3):145-65. PubMed ID: 1369239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial protein adsorption and inactivation.
    Sadana A
    Bioseparation; 1992-1993; 3(5):297-320. PubMed ID: 1369429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring orthogonal proteomic routines to understand protein separation during ion exchange chromatography.
    Cabrera R; Zhelyazkova P; Galvis L; Fernandez-Lahore M
    J Sep Sci; 2008 Jul; 31(13):2500-10. PubMed ID: 18646262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane chromatography: preparation and applications to protein separation.
    Zeng X; Ruckenstein E
    Biotechnol Prog; 1999; 15(6):1003-19. PubMed ID: 10585183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of biologically active enzymes after HPLC separation.
    Herold M; Rozing GP; Curtis JL
    Biotechniques; 1991 May; 10(5):656-62. PubMed ID: 1910783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New methods of protein purification. Displacement chromatography.
    Galaev IY
    Biochemistry (Mosc); 1998 Nov; 63(11):1258-65. PubMed ID: 9864463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein displacement by simplified immobilized metal ion affinity chromatographic model.
    Kim YJ
    Bioseparation; 1995 Oct; 5(5):295-306. PubMed ID: 8720851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two dimensional liquid phase separations of proteins using online fractionation and concentration between chromatographic dimensions.
    Karty JA; Running WE; Reilly JP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 847(2):103-13. PubMed ID: 17056305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L; Lu D; Liu Z
    J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein identification by liquid chromatography-mass spectrometry using retention time prediction.
    Palmblad M; Ramström M; Bailey CG; McCutchen-Maloney SL; Bergquist J; Zeller LC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Apr; 803(1):131-5. PubMed ID: 15026006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward chromatographic analysis of interacting protein networks.
    Liu X; Yang WC; Gao Q; Regnier F
    J Chromatogr A; 2008 Jan; 1178(1-2):24-32. PubMed ID: 18076893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein purification by multidimensional liquid chromatography.
    Berkowitz SA
    Adv Chromatogr; 1989; 29():175-219. PubMed ID: 2667288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying.
    Carpenter JF; Arakawa T; Crowe JH
    Dev Biol Stand; 1992; 74():225-38; discussion 238-9. PubMed ID: 1592173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain.
    Lohaus C; Nolte A; Blüggel M; Scheer C; Klose J; Gobom J; Schüler A; Wiebringhaus T; Meyer HE; Marcus K
    J Proteome Res; 2007 Jan; 6(1):105-13. PubMed ID: 17203954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying process tradeoffs in the operation of chromatographic sequences.
    Ngiam SH; Bracewell DG; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2003; 19(4):1315-22. PubMed ID: 12892496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From gel filtration to biosensor technology: the development of chromatography for the characterization of protein interactions.
    Winzor DJ
    J Mol Recognit; 2000; 13(5):279-98. PubMed ID: 10992291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MINLP models for the synthesis of optimal peptide tags and downstream protein processing.
    Simeonidis E; Pinto JM; Lienqueo ME; Tsoka S; Papageorgiou LG
    Biotechnol Prog; 2005; 21(3):875-84. PubMed ID: 15932268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.