These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1368209)
1. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Fukuda K; Teramoto Y; Goto M; Sakamoto J; Mitsuiki S; Hayashida S Biosci Biotechnol Biochem; 1992 Apr; 56(4):556-9. PubMed ID: 1368209 [TBL] [Abstract][Full Text] [Related]
2. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch. Goto M; Kuwano E; Kanlayakrit W; Hayashida S Biosci Biotechnol Biochem; 1995 Jan; 59(1):16-20. PubMed ID: 7765970 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Goto M; Semimaru T; Furukawa K; Hayashida S Appl Environ Microbiol; 1994 Nov; 60(11):3926-30. PubMed ID: 7993082 [TBL] [Abstract][Full Text] [Related]
4. Production and Characteristics of Raw Starch-Digesting Glucoamylase O from a Protease-Negative, Glycosidase-Negative Aspergillus awamori var. kawachi Mutant. Flor PQ; Hayashida S Appl Environ Microbiol; 1983 Mar; 45(3):905-12. PubMed ID: 16346254 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Semimaru T; Goto M; Furukawa K; Hayashida S Appl Environ Microbiol; 1995 Aug; 61(8):2885-90. PubMed ID: 7487021 [TBL] [Abstract][Full Text] [Related]
6. Separation and direct detection of raw and gelatinized starch hydrolyzing activities of glucoamylase on isoelectric focusing gels. Suresh C; Dubey AK; Kini R; Umesh-Kumar S; Karanth NG Electrophoresis; 1999 Mar; 20(3):483-5. PubMed ID: 10217158 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
8. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Sumitani J; Tottori T; Kawaguchi T; Arai M Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of the surface hydrolysis of raw starch by glucoamylase. Tatsumi H; Katano H J Agric Food Chem; 2005 Oct; 53(21):8123-7. PubMed ID: 16218653 [TBL] [Abstract][Full Text] [Related]
10. Alteration of the properties of Aspergillus sp. K-27 glucoamylase on limited proteolysis with subtilisin. Abe J; Nakajima K; Hizukuri S Carbohydr Res; 1990 Aug; 203(1):129-38. PubMed ID: 2224899 [TBL] [Abstract][Full Text] [Related]
11. Improved adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase. Chen LJ; Ford C; Kusnadi A; Nikolov ZL Biotechnol Prog; 1991; 7(3):225-9. PubMed ID: 1367595 [TBL] [Abstract][Full Text] [Related]
12. Adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Chen LJ; Ford C; Nikolov Z Gene; 1991 Mar; 99(1):121-6. PubMed ID: 1902429 [TBL] [Abstract][Full Text] [Related]
13. Interaction of beta-cyclodextrin with the granular starch binding domain of glucoamylase. Belshaw NJ; Williamson G Biochim Biophys Acta; 1991 May; 1078(1):117-20. PubMed ID: 2049377 [TBL] [Abstract][Full Text] [Related]
14. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. de Moraes LM; Astolfi-Filho S; Oliver SG Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658 [TBL] [Abstract][Full Text] [Related]
15. Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Coutinho PM; Reilly PJ Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888 [TBL] [Abstract][Full Text] [Related]
16. Promotive and inhibitory effects of raw starch adsorbable fragments from pancreatic alpha-amylase on enzymatic digestions of raw starch. Hayashida S; Teramoto Y; Kira I Agric Biol Chem; 1991 Jan; 55(1):1-6. PubMed ID: 1368657 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and determination of the nucleotide sequence of raw starch digesting alpha-amylase from Aspergillus awamori KT-11. Matsubara T; Ben Ammar Y; Anindyawati T; Yamamoto S; Ito K; Iizuka M; Minamiura N J Biochem Mol Biol; 2004 Jul; 37(4):429-38. PubMed ID: 15469730 [TBL] [Abstract][Full Text] [Related]
18. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase. Libby CB; Cornett CA; Reilly PJ; Ford C Protein Eng; 1994 Sep; 7(9):1109-14. PubMed ID: 7831281 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
20. An extracellular glucoamylase produced by endophytic fungus EF6. Tangngamsakul P; Karnchanatat A; Sihanonth P; Sangvanich P Prikl Biokhim Mikrobiol; 2011; 47(4):455-61. PubMed ID: 21950121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]