These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 1368249)
1. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium. Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249 [TBL] [Abstract][Full Text] [Related]
2. Influence of dissolved oxygen concentration on the biosynthesis of cephalosporin C. Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K Enzyme Microb Technol; 1992 Oct; 14(10):848-54. PubMed ID: 1368971 [TBL] [Abstract][Full Text] [Related]
3. Cephalosporin C production by a highly productive Cephalosporium acremonium strain in an airlift tower loop reactor with static mixers. Zhou W; Holzhauer-Rieger K; Bayer T; Schügerl K J Biotechnol; 1993 Apr; 28(2-3):165-77. PubMed ID: 7763560 [TBL] [Abstract][Full Text] [Related]
4. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium. Vicik SM; Fedor AJ; Swartz RW Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872 [TBL] [Abstract][Full Text] [Related]
5. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor. Cruz AJ; Pan T; Giordano RC; Araujo ML; Hokka CO Biotechnol Bioeng; 2004 Jan; 85(1):96-102. PubMed ID: 14705016 [TBL] [Abstract][Full Text] [Related]
6. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation. Basak S; Velayudhan A; Ladisch MR Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014 [TBL] [Abstract][Full Text] [Related]
7. Effect of methionine on cephalosporin C and penicillin N production by a mutant of Cephalosporium acremonium. Komatsu KI; Mizuno M; Kodaira R J Antibiot (Tokyo); 1975 Nov; 28(11):881-8. PubMed ID: 1238383 [TBL] [Abstract][Full Text] [Related]
8. Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula. Kim JH; Lim JS; Kim CH; Kim SW Lett Appl Microbiol; 2005; 40(5):307-11. PubMed ID: 15836730 [TBL] [Abstract][Full Text] [Related]
9. Sulphate and methionine as sulphur sources for cysteine and cephalosporin C synthesis in Cephalosporium acremonium. Lewandowska M; Paszewski A Acta Microbiol Pol; 1988; 37(1):17-26. PubMed ID: 2462331 [TBL] [Abstract][Full Text] [Related]
10. Utilization of glycerol as cysteine and carbon sources for cephalosporin C production by Acremonium chrysogenum M35 in methionine-unsupplemented culture. Shin HY; Lee JY; Park C; Kim SW J Biotechnol; 2011 Feb; 151(4):363-8. PubMed ID: 21219942 [TBL] [Abstract][Full Text] [Related]
11. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum. Terfehr D; Kück U Microbiology (Reading); 2017 Jun; 163(6):817-828. PubMed ID: 28598313 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Lee MS; Lim JS; Kim CH; Oh KK; Yang DR; Kim SW Lett Appl Microbiol; 2001 Jun; 32(6):402-6. PubMed ID: 11412352 [TBL] [Abstract][Full Text] [Related]
13. On-line and off-line monitoring of the production of cephalosporin C by Acremonium chrysogenum. Seidel G; Tollnick C; Beyer M; Schügerl K Adv Biochem Eng Biotechnol; 2000; 66():115-32. PubMed ID: 10592528 [TBL] [Abstract][Full Text] [Related]
14. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lee JH; Yoo HY; Yang X; Kim DS; Lee JH; Lee SK; Han SO; Kim SW Lett Appl Microbiol; 2017 Jan; 64(1):66-72. PubMed ID: 27736007 [TBL] [Abstract][Full Text] [Related]
15. Identification of rate-limiting steps in cephalosporin C biosynthesis in Cephalosporium acremonium: a theoretical analysis. Malmberg LH; Hu WS Appl Microbiol Biotechnol; 1992 Oct; 38(1):122-8. PubMed ID: 1369008 [TBL] [Abstract][Full Text] [Related]
16. Use of alpha-aminoadipic acid for the biosynthesis of penicillin N and cephalosporin C by a Cephalosporium sp. Warren SC; Newton GG; Abraham EP Biochem J; 1967 Jun; 103(3):891-901. PubMed ID: 6069167 [TBL] [Abstract][Full Text] [Related]
17. Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose. Küenzi M Arch Microbiol; 1980 Nov; 128(1):78-83. PubMed ID: 7192969 [TBL] [Abstract][Full Text] [Related]
18. Modeling and simulation of cephalosporin C production in a fed-batch tower-type bioreactor. Almeida RM; Cruz AJ; Araujo ML; Giordano RC; Hokka CO Appl Biochem Biotechnol; 2001; 91-93():537-49. PubMed ID: 11963883 [TBL] [Abstract][Full Text] [Related]
19. Cephalosporin C production by Cephalosporium acremonium: the methionine story. Demain AL; Zhang J Crit Rev Biotechnol; 1998; 18(4):283-94. PubMed ID: 9887506 [TBL] [Abstract][Full Text] [Related]
20. Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. Shin HY; Lee JY; Choi HS; Lee JH; Kim SW J Microbiol; 2011 Oct; 49(5):753-8. PubMed ID: 22068491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]