These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1368442)

  • 1. Serpins: implications of a mobile reactive centre.
    Crowther DC; Evans DL; Carrell RW
    Curr Opin Biotechnol; 1992 Aug; 3(4):399-407. PubMed ID: 1368442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering of chimeric Serpins: an investigation into effects of the serpin scaffold and reactive centre loop length.
    Bottomley SP; Stone SR
    Protein Eng; 1998 Dec; 11(12):1243-7. PubMed ID: 9930674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile reactive centre of serpins and the control of thrombosis.
    Carrell RW; Evans DL; Stein PE
    Nature; 1991 Oct; 353(6344):576-8. PubMed ID: 1922367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes in serpins and the mechanism of alpha 1-antitrypsin deficiency.
    Carrell RW; Whisstock J; Lomas DA
    Am J Respir Crit Care Med; 1994 Dec; 150(6 Pt 2):S171-5. PubMed ID: 7952655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, antithrombin III, alpha 2-antiplasmin, angiotensinogen, and ovalbumin.
    Mast AE; Enghild JJ; Pizzo SV; Salvesen G
    Biochemistry; 1991 Feb; 30(6):1723-30. PubMed ID: 1704258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural puzzle of how serpin serine proteinase inhibitors work.
    Wright HT
    Bioessays; 1996 Jun; 18(6):453-64. PubMed ID: 8787534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the specificity of serpin-protease complexes through interface analysis.
    Rashid Q; Kapil C; Singh P; Kumari V; Jairajpuri MA
    J Biomol Struct Dyn; 2015; 33(6):1352-62. PubMed ID: 25052369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of reactive centre loop length upon serpin polymerisation.
    Bottomley SP; Chang WS
    Biochem Biophys Res Commun; 1997 Dec; 241(2):264-9. PubMed ID: 9425260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing serpin reactive-loop conformations by proteolytic cleavage.
    Chang WS; Wardell MR; Lomas DA; Carrell RW
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):647-53. PubMed ID: 8670081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reactive site loop of the serpin SCCA1 is essential for cysteine proteinase inhibition.
    Schick C; Brömme D; Bartuski AJ; Uemura Y; Schechter NM; Silverman GA
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13465-70. PubMed ID: 9811823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-ovalbumin, an ovalbumin conformer with properties analogous to those of loop-inserted serpins.
    Huntington JA; Patston PA; Gettins PG
    Protein Sci; 1995 Apr; 4(4):613-21. PubMed ID: 7613461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural basis for loop C-sheet polymerization in serpins.
    Zhang Q; Law RH; Bottomley SP; Whisstock JC; Buckle AM
    J Mol Biol; 2008 Mar; 376(5):1348-59. PubMed ID: 18234218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How serpins change their fold for better and for worse.
    Carrell RW; Huntington JA
    Biochem Soc Symp; 2003; (70):163-78. PubMed ID: 14587291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.
    Ellisdon AM; Zhang Q; Henstridge MA; Johnson TK; Warr CG; Law RH; Whisstock JC
    BMC Struct Biol; 2014 Apr; 14():14. PubMed ID: 24758516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions.
    Schreuder HA; de Boer B; Dijkema R; Mulders J; Theunissen HJ; Grootenhuis PD; Hol WG
    Nat Struct Biol; 1994 Jan; 1(1):48-54. PubMed ID: 7656006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin.
    Whisstock JC; Skinner R; Carrell RW; Lesk AM
    J Mol Biol; 2000 Feb; 296(2):685-99. PubMed ID: 10669617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin.
    Whisstock JC; Skinner R; Carrell RW; Lesk AM
    J Mol Biol; 2000 Jan; 295(3):651-65. PubMed ID: 10623554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of secondary structure predictions on the reactive center loop region of serpins: a model for the folding of serpins into a metastable state.
    Patston PA; Gettins PG
    FEBS Lett; 1996 Mar; 383(1-2):87-92. PubMed ID: 8612799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).
    Ulbricht D; Pippel J; Schultz S; Meier R; Sträter N; Heiker JT
    Biochem J; 2015 Sep; 470(3):357-67. PubMed ID: 26199422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 1.5 A crystal structure of a prokaryote serpin: controlling conformational change in a heated environment.
    Irving JA; Cabrita LD; Rossjohn J; Pike RN; Bottomley SP; Whisstock JC
    Structure; 2003 Apr; 11(4):387-97. PubMed ID: 12679017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.