BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1368472)

  • 1. Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture.
    Golovleva LA; Pertsova RN; Evtushenko LI; Baskunov BP
    Biodegradation; 1990; 1(4):263-71. PubMed ID: 1368472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of maleylacetate reductase from Nocardioides simplex 3E utilizing phenoxyalcanoic herbicides 2,4-D and 2,4,5-T.
    Travkin VM; Linko EV; Golovleva LA
    Biochemistry (Mosc); 1999 Jun; 64(6):625-30. PubMed ID: 10395975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia.
    Karns JS; Kilbane JJ; Duttagupta S; Chakrabarty AM
    Appl Environ Microbiol; 1983 Nov; 46(5):1176-81. PubMed ID: 6651297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T.
    Travkin VM; Jadan AP; Briganti F; Scozzafava A; Golovleva LA
    FEBS Lett; 1997 Apr; 407(1):69-72. PubMed ID: 9141483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures.
    Haugland RA; Schlemm DJ; Lyons RP; Sferra PR; Chakrabarty AM
    Appl Environ Microbiol; 1990 May; 56(5):1357-62. PubMed ID: 2339889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100.
    Karns JS; Duttagupta S; Chakrabarty AM
    Appl Environ Microbiol; 1983 Nov; 46(5):1182-6. PubMed ID: 6651298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments.
    Al-Fathi H; Koch M; Lorenz WG; Lechner U
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34459-34467. PubMed ID: 31642015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil.
    Rice JF; Menn FM; Hay AG; Sanseverino J; Sayler GS
    Biodegradation; 2005 Dec; 16(6):501-12. PubMed ID: 15865343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil.
    Piutti S; Semon E; Landry D; Hartmann A; Dousset S; Lichtfouse E; Topp E; Soulas G; Martin-Laurent F
    FEMS Microbiol Lett; 2003 Apr; 221(1):111-7. PubMed ID: 12694918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2.
    Behrend C; Heesche-Wagner K
    Appl Environ Microbiol; 1999 Apr; 65(4):1372-7. PubMed ID: 10103224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microbial degraders of some organochlorine compounds].
    Mitsevich EV; Mitsevich IP; Perelygin VV
    Prikl Biokhim Mikrobiol; 2000; 36(6):642-6. PubMed ID: 11116906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia.
    Kilbane JJ; Chatterjee DK; Karns JS; Kellogg ST; Chakrabarty AM
    Appl Environ Microbiol; 1982 Jul; 44(1):72-8. PubMed ID: 7125648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic study of the photodegradation of herbicide 2,4,5-trichlorophenoxyacetic acid in aqueous solution.
    Yurkova MP; Pozdnyakov IP; Plyusnin VF; Grivin VP; Bazhin NM; Kruppa AI; Maksimova TA
    Photochem Photobiol Sci; 2013 Apr; 12(4):684-9. PubMed ID: 23085749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem.
    Satsuma K
    Pest Manag Sci; 2006 Apr; 62(4):340-9. PubMed ID: 16493696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill.
    Lechner U; Türkowsky D; Dinh TTH; Al-Fathi H; Schwoch S; Franke S; Gerlach MS; Koch M; von Bergen M; Jehmlich N; Dang TCH
    Microb Biotechnol; 2018 Nov; 11(6):1137-1156. PubMed ID: 30117290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of mono-chlorinated dibenzo-p-dioxins by Janibacter sp. strain YA isolated from river sediment.
    Iwai S; Yamazoe A; Takahashi R; Kurisu F; Yagi O
    Curr Microbiol; 2005 Nov; 51(5):353-8. PubMed ID: 16235020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals.
    Kellogg ST; Chatterjee DK; Chakrabarty AM
    Science; 1981 Dec; 214(4525):1133-5. PubMed ID: 7302584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight.
    Daubaras DL; Danganan CE; Hübner A; Ye RW; Hendrickson W; Chakrabarty AM
    Gene; 1996 Nov; 179(1):1-8. PubMed ID: 8955624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8.
    Hamamura N; Arp DJ
    FEMS Microbiol Lett; 2000 May; 186(1):21-6. PubMed ID: 10779707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of Sphingobium sp. BHC-A to a 2,4,5-trichlorophenoxyacetic acid mineralizing strain by metabolic engineering.
    Ge F; Chen X; Wang X; Liao X; Jiao Y; Hong Q; Zhang L; Wu J
    J Biotechnol; 2013 Jul; 166(4):187-91. PubMed ID: 23747683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.