These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 1368472)
1. Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Golovleva LA; Pertsova RN; Evtushenko LI; Baskunov BP Biodegradation; 1990; 1(4):263-71. PubMed ID: 1368472 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of maleylacetate reductase from Nocardioides simplex 3E utilizing phenoxyalcanoic herbicides 2,4-D and 2,4,5-T. Travkin VM; Linko EV; Golovleva LA Biochemistry (Mosc); 1999 Jun; 64(6):625-30. PubMed ID: 10395975 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Karns JS; Kilbane JJ; Duttagupta S; Chakrabarty AM Appl Environ Microbiol; 1983 Nov; 46(5):1176-81. PubMed ID: 6651297 [TBL] [Abstract][Full Text] [Related]
4. Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T. Travkin VM; Jadan AP; Briganti F; Scozzafava A; Golovleva LA FEBS Lett; 1997 Apr; 407(1):69-72. PubMed ID: 9141483 [TBL] [Abstract][Full Text] [Related]
5. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Haugland RA; Schlemm DJ; Lyons RP; Sferra PR; Chakrabarty AM Appl Environ Microbiol; 1990 May; 56(5):1357-62. PubMed ID: 2339889 [TBL] [Abstract][Full Text] [Related]
6. Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100. Karns JS; Duttagupta S; Chakrabarty AM Appl Environ Microbiol; 1983 Nov; 46(5):1182-6. PubMed ID: 6651298 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments. Al-Fathi H; Koch M; Lorenz WG; Lechner U Environ Sci Pollut Res Int; 2019 Nov; 26(33):34459-34467. PubMed ID: 31642015 [TBL] [Abstract][Full Text] [Related]
8. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil. Rice JF; Menn FM; Hay AG; Sanseverino J; Sayler GS Biodegradation; 2005 Dec; 16(6):501-12. PubMed ID: 15865343 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. Piutti S; Semon E; Landry D; Hartmann A; Dousset S; Lichtfouse E; Topp E; Soulas G; Martin-Laurent F FEMS Microbiol Lett; 2003 Apr; 221(1):111-7. PubMed ID: 12694918 [TBL] [Abstract][Full Text] [Related]
10. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Behrend C; Heesche-Wagner K Appl Environ Microbiol; 1999 Apr; 65(4):1372-7. PubMed ID: 10103224 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Kilbane JJ; Chatterjee DK; Karns JS; Kellogg ST; Chakrabarty AM Appl Environ Microbiol; 1982 Jul; 44(1):72-8. PubMed ID: 7125648 [TBL] [Abstract][Full Text] [Related]
13. A mechanistic study of the photodegradation of herbicide 2,4,5-trichlorophenoxyacetic acid in aqueous solution. Yurkova MP; Pozdnyakov IP; Plyusnin VF; Grivin VP; Bazhin NM; Kruppa AI; Maksimova TA Photochem Photobiol Sci; 2013 Apr; 12(4):684-9. PubMed ID: 23085749 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. Satsuma K Pest Manag Sci; 2006 Apr; 62(4):340-9. PubMed ID: 16493696 [TBL] [Abstract][Full Text] [Related]
15. Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill. Lechner U; Türkowsky D; Dinh TTH; Al-Fathi H; Schwoch S; Franke S; Gerlach MS; Koch M; von Bergen M; Jehmlich N; Dang TCH Microb Biotechnol; 2018 Nov; 11(6):1137-1156. PubMed ID: 30117290 [TBL] [Abstract][Full Text] [Related]
16. Degradation of mono-chlorinated dibenzo-p-dioxins by Janibacter sp. strain YA isolated from river sediment. Iwai S; Yamazoe A; Takahashi R; Kurisu F; Yagi O Curr Microbiol; 2005 Nov; 51(5):353-8. PubMed ID: 16235020 [TBL] [Abstract][Full Text] [Related]
17. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Kellogg ST; Chatterjee DK; Chakrabarty AM Science; 1981 Dec; 214(4525):1133-5. PubMed ID: 7302584 [TBL] [Abstract][Full Text] [Related]
18. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight. Daubaras DL; Danganan CE; Hübner A; Ye RW; Hendrickson W; Chakrabarty AM Gene; 1996 Nov; 179(1):1-8. PubMed ID: 8955624 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. Hamamura N; Arp DJ FEMS Microbiol Lett; 2000 May; 186(1):21-6. PubMed ID: 10779707 [TBL] [Abstract][Full Text] [Related]
20. Extension of Sphingobium sp. BHC-A to a 2,4,5-trichlorophenoxyacetic acid mineralizing strain by metabolic engineering. Ge F; Chen X; Wang X; Liao X; Jiao Y; Hong Q; Zhang L; Wu J J Biotechnol; 2013 Jul; 166(4):187-91. PubMed ID: 23747683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]