These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1368477)

  • 1. Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1.
    Kertesz M; Elgorriaga A; Amrhein N
    Biodegradation; 1991; 2(1):53-9. PubMed ID: 1368477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of glyphosate in an Arthrobacter sp. GLP-1.
    Pipke R; Amrhein N; Jacob GS; Schaefer J; Kishore GM
    Eur J Biochem; 1987 Jun; 165(2):267-73. PubMed ID: 2439330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20.
    Obojska A; Ternan NG; Lejczak B; Kafarski P; McMullan G
    Appl Environ Microbiol; 2002 Apr; 68(4):2081-4. PubMed ID: 11916738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to identification and activity estimation of glyphosate degradation enzymes.
    Sviridov AV; Zelenkova NF; Vinokurova NG; Ermakova IT; Leontievsky AA
    Biochemistry (Mosc); 2011 Jun; 76(6):720-5. PubMed ID: 21639854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.
    Ermakova IT; Shushkova TV; Sviridov AV; Zelenkova NF; Vinokurova NG; Baskunov BP; Leontievsky AA
    Arch Microbiol; 2017 Jul; 199(5):665-675. PubMed ID: 28184965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation.
    Dick RE; Quinn JP
    Appl Microbiol Biotechnol; 1995 Jul; 43(3):545-50. PubMed ID: 7632402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microbial degradation of organophosphonates by soil bacteria].
    Ermakova IT; Shushkova TV; Leont'evskiĭ AA
    Mikrobiologiia; 2008; 77(5):689-95. PubMed ID: 19004352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of phosphonates by streptomycete isolates.
    Obojska A; Lejczak B; Kubrak M
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):872-6. PubMed ID: 10422232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the methylenediphosphonate transport system in Arthrobacter sp. GLP-1 using the novel tritium-labelled derivative.
    Yakovleva GM; Blackburn GM
    FEBS Lett; 1993 Feb; 317(1-2):125-7. PubMed ID: 8428621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752.
    Pipke R; Amrhein N
    Appl Environ Microbiol; 1988 May; 54(5):1293-6. PubMed ID: 16347639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp.
    Sviridov AV; Shushkova TV; Zelenkova NF; Vinokurova NG; Morgunov IG; Ermakova IT; Leontievsky AA
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):787-96. PubMed ID: 21789492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primer design to assess bacterial degradation of glyphosate and other phosphonates.
    Morales ME; Allegrini M; Basualdo J; Villamil MB; Zabaloy MC
    J Microbiol Methods; 2020 Feb; 169():105814. PubMed ID: 31866379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Characterization of a Mutant of Arthrobacter sp. Strain GLP-1 Which Utilizes the Herbicide Glyphosate as Its Sole Source of Phosphorus and Nitrogen.
    Pipke R; Amrhein N
    Appl Environ Microbiol; 1988 Nov; 54(11):2868-70. PubMed ID: 16347784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.
    Zboińska E; Lejczak B; Kafarski P
    Appl Environ Microbiol; 1992 Sep; 58(9):2993-9. PubMed ID: 1444412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of glyphosate in Pseudomonas sp. strain LBr.
    Jacob GS; Garbow JR; Hallas LE; Kimack NM; Kishore GM; Schaefer J
    Appl Environ Microbiol; 1988 Dec; 54(12):2953-8. PubMed ID: 3223761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology.
    Shushkova TV; Vinokurova NG; Baskunov BP; Zelenkova NF; Sviridov AV; Ermakova IT; Leontievsky AA
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):847-55. PubMed ID: 26521241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in glyphosate biodegradation.
    Zhan H; Feng Y; Fan X; Chen S
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5033-5043. PubMed ID: 29705962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.