These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 1368674)
81. Studies on cycloheximide-sensitive and cycloheximide-resistant ribosomes in the yeast Candida maltosa. Mutoh E; Ohta A; Takagi M Gene; 1998 Dec; 224(1-2):9-15. PubMed ID: 9931408 [TBL] [Abstract][Full Text] [Related]
82. Construction of a positive selection marker by a lethal gene with the amber stop codon(s) regulator. Ohashi-Kunihiro S; Hagiwara H; Yohda M; Masaki H; Machida M Biosci Biotechnol Biochem; 2006 Jan; 70(1):119-25. PubMed ID: 16428829 [TBL] [Abstract][Full Text] [Related]
84. A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa. Tang SJ; Sun KH; Sun GH; Chang TY; Wu WL; Lee GC J Microbiol Methods; 2003 Feb; 52(2):231-8. PubMed ID: 12459243 [TBL] [Abstract][Full Text] [Related]
85. Genetic analysis of methylotrophic yeast Candida boidinii PLD1. Lahtchev K; Penkova R; Ivanova V; Tuneva D Antonie Van Leeuwenhoek; 1992 Apr; 61(3):185-94. PubMed ID: 1519915 [TBL] [Abstract][Full Text] [Related]
86. Physiological and DNA characterization of Candida maltosa, a hydrocarbon-utilizing yeast. Meyer SA; Anderson K; Brown RE; Smith MT; Yarrow D; Mitchell G; Ahearn DG Arch Microbiol; 1975 Aug; 104(3):225-31. PubMed ID: 53037 [TBL] [Abstract][Full Text] [Related]
87. Isolation and characterization of L-valine-degrading Candida maltosa DLPU-zpb for D-valine preparation from DL-valine. Zhang CH; Xin WT; Chen M; Bi Y; Gao ZQ; Zhang J Lett Appl Microbiol; 2015 Nov; 61(5):453-9. PubMed ID: 26250528 [TBL] [Abstract][Full Text] [Related]
88. Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Ohkuma M; Park SM; Zimmer T; Menzel R; Vogel F; Schunck WH; Ohta A; Takagi M Biochim Biophys Acta; 1995 May; 1236(1):163-9. PubMed ID: 7794946 [TBL] [Abstract][Full Text] [Related]
89. Construction of an effective host-vector system for the yeast Saccharomyces exiguus Yp74L-3. Hisatomi T; Takahashi K; Oomoto T; Yamashita Y; Hasegawa S; Tsuboi M Biosci Biotechnol Biochem; 1999 May; 63(5):847-50. PubMed ID: 10380627 [TBL] [Abstract][Full Text] [Related]
90. In situ localization of cytochrome P-450, the first enzyme involved in aliphatic hydrocarbon degradation in the yeast Candida maltosa. Vogel F; Kärgel E; Schunck WH Prog Histochem Cytochem; 1991; 23(1-4):383-9. PubMed ID: 1947165 [No Abstract] [Full Text] [Related]
91. Determination of the mutational block in the adenine biosynthetic pathway of yeast Torulopsis bovina. Rao SP; Polasa H Indian J Exp Biol; 1979 Sep; 17(9):879-81. PubMed ID: 575647 [No Abstract] [Full Text] [Related]
92. Cloning of stress tolerance gene in Torulaspora delbrueckii No. 3110. Nakata K; Okamura K Biosci Biotechnol Biochem; 1996 Oct; 60(10):1686-9. PubMed ID: 8987669 [TBL] [Abstract][Full Text] [Related]
93. Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon oivide. Kurtz AM; Crow SA Curr Microbiol; 1997 Sep; 35(3):165-8. PubMed ID: 9236299 [TBL] [Abstract][Full Text] [Related]
94. A study on transformation in a mutant of Candida pseudotropicalis. Frye BL; Lancaster JH; Larsh HW Sabouraudia; 1976 Jul; 14(2):205-9. PubMed ID: 959946 [TBL] [Abstract][Full Text] [Related]
95. A Protocol of Using White/Red Color Assay to Measure Amyloid-induced Oxidative Stress in Bharathi V; Girdhar A; Patel BK Bio Protoc; 2017 Aug; 7(15):e2440. PubMed ID: 34541159 [TBL] [Abstract][Full Text] [Related]
96. Genetic modification of Chávez-Tinoco M; García-Ortega LF; Mancera E Microbiology (Reading); 2024 Mar; 170(3):. PubMed ID: 38456839 [No Abstract] [Full Text] [Related]
97. Isolation and characterization of EPD1, an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa. Nakazawa T; Horiuchi H; Ohta A; Takagi M J Bacteriol; 1998 Apr; 180(8):2079-86. PubMed ID: 9555889 [TBL] [Abstract][Full Text] [Related]
98. Evidence that part of a centromeric DNA region induces pseudohyphal growth in a dimorphic yeast, Candida maltosa. Nakazawa T; Motoyama T; Horiuchi H; Ohta A; Takagi M J Bacteriol; 1997 Aug; 179(16):5030-6. PubMed ID: 9260943 [TBL] [Abstract][Full Text] [Related]
99. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa. Ohkuma M; Kobayashi K; Kawai S; Hwang CW; Ohta A; Takagi M Mol Gen Genet; 1995 Dec; 249(4):447-55. PubMed ID: 8552050 [TBL] [Abstract][Full Text] [Related]
100. Cloning of the C-URA3 gene and construction of a triple auxotroph (his5, ade1, ura3) as a useful host for the genetic engineering of Candida maltosa. Ohkuma M; Muraoka S; Hwang CW; Ohta A; Takagi M Curr Genet; 1993 Mar; 23(3):205-10. PubMed ID: 8435849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]