These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1368775)

  • 1. High resolution removal of virus from protein solutions using a membrane of unique structure.
    DiLeo AJ; Allegrezza AE; Builder SE
    Biotechnology (N Y); 1992 Feb; 10(2):182-8. PubMed ID: 1368775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virus removal from bioproducts using ultrafiltration membranes modified with latex particle pretreatment.
    Bellara SR; Cui Z; MacDonald SL; Pepper DS
    Bioseparation; 1998; 7(2):79-88. PubMed ID: 9763696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):275-86. PubMed ID: 8117441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New and conventional pore size tests in virus-removing membranes.
    Duek A; Arkhangelsky E; Krush R; Brenner A; Gitis V
    Water Res; 2012 May; 46(8):2505-14. PubMed ID: 22265254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The removal of phages T1 and PP7, and poliovirus from fluids with hollow-fiber ultrafilters with molecular weight cut-offs of 50,000, 13,000, and 6000.
    Oshima KH; Evans-Strickfaden TT; Highsmith AK; Ades EW
    Can J Microbiol; 1995; 41(4-5):316-22. PubMed ID: 8590412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Module qualification and process simulation.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):287-96. PubMed ID: 8117442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing.
    Phillips M; Cormier J; Ferrence J; Dowd C; Kiss R; Lutz H; Carter J
    J Chromatogr A; 2005 Jun; 1078(1-2):74-82. PubMed ID: 16007984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
    Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C
    Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a novel Viresolve NFR virus filter.
    Brough H; Antoniou C; Carter J; Jakubik J; Xu Y; Lutz H
    Biotechnol Prog; 2002; 18(4):782-95. PubMed ID: 12153313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal virus polarization model for virus retention by the Ultipor(®) VF Grade DV20 membrane.
    Jackson NB; Bakhshayeshi M; Zydney AL; Mehta A; van Reis R; Kuriyel R
    Biotechnol Prog; 2014; 30(4):856-63. PubMed ID: 24616397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus separation using membranes.
    Grein TA; Michalsky R; Czermak P
    Methods Mol Biol; 2014; 1104():459-91. PubMed ID: 24297430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of viruses by a novel polyvinylidene fluoride membrane filter.
    Roberts P
    J Virol Methods; 1997 Apr; 65(1):27-31. PubMed ID: 9128859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions.
    Mocé-Llivina L; Jofre J; Muniesa M
    J Virol Methods; 2003 Apr; 109(1):99-101. PubMed ID: 12668275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal.
    Raciny I; Zodrow KR; Li D; Li Q; Alvarez PJ
    Water Sci Technol; 2011; 63(10):2346-52. PubMed ID: 21977659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A validatible porosimetric technique for verifying the integrity of virus-retentive membranes.
    Phillips MW; DiLeo AJ
    Biologicals; 1996 Sep; 24(3):243-53. PubMed ID: 8978924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems.
    Winona LJ; Ommani AW; Olszewski J; Nuzzo JB; Oshima KH
    Can J Microbiol; 2001 Nov; 47(11):1033-41. PubMed ID: 11766052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydraulically reversible and hydraulically irreversible fouling on the removal of MS2 and φX174 bacteriophage by an ultrafiltration membrane.
    ElHadidy AM; Peldszus S; Van Dyke MI
    Water Res; 2014 Sep; 61():297-307. PubMed ID: 24967952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes.
    Mochizuki S; Zydney AL
    Biotechnol Prog; 1992; 8(6):553-61. PubMed ID: 1369038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of bacteriophages as surrogates for mammalian viruses.
    McAlister M; Aranha H; Larson R
    Dev Biol (Basel); 2004; 118():89-98. PubMed ID: 15645677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus removal or inactivation in hemoglobin solutions by ultrafiltration or detergent/solvent treatment.
    Bechtel MK; Bagdasarian A; Olson WP; Estep TN
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):123-8. PubMed ID: 2846096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.