These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1369009)

  • 21. Fabrication of distilled water-soluble chitosan/alginate functional multilayer composite microspheres.
    Xiao C; Sun F
    Carbohydr Polym; 2013 Nov; 98(2):1366-70. PubMed ID: 24053815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation.
    Silva CM; Ribeiro AJ; Figueiredo M; Ferreira D; Veiga F
    AAPS J; 2006 Jan; 7(4):E903-13. PubMed ID: 16594643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.
    Abang S; Chan ES; Poncelet D
    J Microencapsul; 2012; 29(5):417-28. PubMed ID: 22292966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles.
    Reis CP; Neufeld RJ; Vilela S; Ribeiro AJ; Veiga F
    J Microencapsul; 2006 May; 23(3):245-57. PubMed ID: 16801237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks.
    Martins E; Poncelet D; Rodrigues RC; Renard D
    J Microencapsul; 2017 Dec; 34(8):754-771. PubMed ID: 29161939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of alginate microspheres containing thyme essential oil using ionic gelation.
    Benavides S; Cortés P; Parada J; Franco W
    Food Chem; 2016 Aug; 204():77-83. PubMed ID: 26988478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell Microencapsulation: Dripping Methods.
    Bidoret A; Martins E; De Smet BP; Poncelet D
    Methods Mol Biol; 2017; 1479():43-55. PubMed ID: 27738925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the size of alginate gel beads by use of a high electrostatic potential.
    Klokk TI; Melvik JE
    J Microencapsul; 2002; 19(4):415-24. PubMed ID: 12396380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.
    Rodríguez-Dorado R; Landín M; Altai A; Russo P; Aquino RP; Del Gaudio P
    Int J Pharm; 2018 Mar; 538(1-2):97-104. PubMed ID: 29341917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation.
    Quong D; Neufeld RJ; Skjåk-Braek G; Poncelet D
    Biotechnol Bioeng; 1998 Feb; 57(4):438-46. PubMed ID: 10099220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification.
    Lee HY; Chan LW; Dolzhenko AV; Heng PW
    J Microencapsul; 2006 Dec; 23(8):912-27. PubMed ID: 17390632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.
    Nayak AK; Pal D
    Int J Biol Macromol; 2011 Nov; 49(4):784-93. PubMed ID: 21816168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying.
    Santa-Maria M; Scher H; Jeoh T
    J Microencapsul; 2012; 29(3):286-95. PubMed ID: 22251237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone.
    Bera H; Boddupalli S; Nandikonda S; Kumar S; Nayak AK
    Int J Biol Macromol; 2015; 78():102-11. PubMed ID: 25861741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads.
    Börner RA; Aliaga MT; Mattiasson B
    Biotechnol Lett; 2013 Mar; 35(3):397-405. PubMed ID: 23224821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of preparation conditions on the nutrient release properties of alginate-whey protein granular microspheres.
    Chen L; Subirade M
    Eur J Pharm Biopharm; 2007 Mar; 65(3):354-62. PubMed ID: 17150342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique.
    Ribeiro AJ; Silva C; Ferreira D; Veiga F
    Eur J Pharm Sci; 2005 May; 25(1):31-40. PubMed ID: 15854798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formulation and evaluation of domperidone loaded mineral oil entrapped emulsion gel (MOEG) buoyant beads.
    Singh I; Kumar P; Singh H; Goyal M; Rana V
    Acta Pol Pharm; 2011; 68(1):121-6. PubMed ID: 21485710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation.
    Silva CM; Ribeiro AJ; Ferreira D; Veiga F
    Eur J Pharm Sci; 2006 Oct; 29(2):148-59. PubMed ID: 16952452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The release rate of curcumin from calcium alginate beads regulated by food emulsifiers.
    Song S; Wang Z; Qian Y; Zhang L; Luo E
    J Agric Food Chem; 2012 May; 60(17):4388-95. PubMed ID: 22497656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.