These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1369013)

  • 41. Heterogeneity of Chinese hamster ovary cell-produced recombinant murine interferon-gamma.
    Dijkmans R; Heremans H; Billiau A
    J Biol Chem; 1987 Feb; 262(6):2528-35. PubMed ID: 2434486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells.
    Wong NS; Yap MG; Wang DI
    Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth and interferon-gamma production in batch culture of CHO cells.
    Leelavatcharamas V; Emery AN; al-Rubeai M
    Cytotechnology; 1994; 15(1-3):65-71. PubMed ID: 7765954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a fed-batch culture process for enhanced production of recombinant human antithrombin by Chinese hamster ovary cells.
    Kuwae S; Ohda T; Tamashima H; Miki H; Kobayashi K
    J Biosci Bioeng; 2005 Nov; 100(5):502-10. PubMed ID: 16384788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients.
    Pereira S; Kildegaard HF; Andersen MR
    Biotechnol J; 2018 Mar; 13(3):e1700499. PubMed ID: 29393587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.
    Torkashvand F; Vaziri B; Maleknia S; Heydari A; Vossoughi M; Davami F; Mahboudi F
    PLoS One; 2015; 10(10):e0140597. PubMed ID: 26480023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Poly-γ-glutamic acid enhances the growth and viability of Chinese hamster ovary cells in serum-free medium.
    Chun BH; Lee YK; Chung N
    Biotechnol Lett; 2012 Oct; 34(10):1807-10. PubMed ID: 22714280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.
    Li D; Zhong Q; Liu T; Wang J
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):925-35. PubMed ID: 26921102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient constitutive production of human IFN-gamma in Chinese hamster ovary cells.
    Mory Y; Ben-Barak J; Segev D; Cohen B; Novick D; Fischer DG; Rubinstein M; Kargman S; Zilberstein A; Vigneron M
    DNA; 1986 Jun; 5(3):181-93. PubMed ID: 3013545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-term multiplication of the Chinese hamster ovary (CHO) cell line in a serum-free medium.
    Gasser F; Mulsant P; Gillois M
    In Vitro Cell Dev Biol; 1985 Oct; 21(10):588-92. PubMed ID: 3902782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-level expression of recombinant human soluble thrombomodulin in serum-free medium by CHO-K1 cells.
    Ogata M; Wakita K; Kimura K; Marumoto Y; Oh-i K; Shimizu S
    Appl Microbiol Biotechnol; 1993 Jan; 38(4):520-5. PubMed ID: 7764042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium.
    Egorova-Zachernyuk TA; Bosman GJ; Degrip WJ
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):397-406. PubMed ID: 20949270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stable production of a human growth hormone antagonist from CHO cells adapted to serum-free suspension culture.
    Haldankar R; Kopchick JJ; Ridgway D
    Biotechnol Prog; 1999; 15(3):336-46. PubMed ID: 10356250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells.
    Scahill SJ; Devos R; Van der Heyden J; Fiers W
    Proc Natl Acad Sci U S A; 1983 Aug; 80(15):4654-8. PubMed ID: 6308636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymer fraction including exosomes derived from Chinese hamster ovary cells promoted their growth during serum-free repeated batch culture.
    Takagi M; Jimbo S; Oda T; Goto Y; Fujiwara M
    J Biosci Bioeng; 2021 Feb; 131(2):183-189. PubMed ID: 33051156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fetal calf serum-free culture of Chinese hamster ovary cells employing fish serum.
    Fujiwara M; Tsukada R; Tsujinaga Y; Takagi M
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):983-7. PubMed ID: 17334756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production.
    Zhang J; Robinson D; Salmon P
    Biotechnol Bioeng; 2006 Dec; 95(6):1188-97. PubMed ID: 16937407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiarray formation of CHO spheroids cocultured with feeder cells for highly efficient protein production in serum-free medium.
    Kutsuzawa K; Takahashi C; Sato R; Suzuki T; Kishimoto H; Murakami A; Azuma T; Abe R; Otsuka H
    J Nanosci Nanotechnol; 2013 Jan; 13(1):229-35. PubMed ID: 23646721
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    McAtee Pereira AG; Walther JL; Hollenbach M; Young JD
    Biotechnol J; 2018 Oct; 13(10):e1700518. PubMed ID: 29405605
    [No Abstract]   [Full Text] [Related]  

  • 60. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.