These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1369022)

  • 61. Toxicology and biocompatibility considerations in the evaluation of polymeric materials for biomedical applications.
    Laurencin CT; Pierre-Jacques HM; Langer R
    Clin Lab Med; 1990 Sep; 10(3):549-70. PubMed ID: 2253450
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of internal structure, polymer erosion and drug release mechanisms of biodegradable poly(ester anhydride)s by X-ray microtomography.
    Mönkäre J; Pajander J; Hakala RA; Savolainen P; Järveläinen M; Korhonen H; Seppälä JV; Järvinen K
    Eur J Pharm Sci; 2012 Aug; 47(1):170-8. PubMed ID: 22683891
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors.
    Sipos EP; Tyler B; Piantadosi S; Burger PC; Brem H
    Cancer Chemother Pharmacol; 1997; 39(5):383-9. PubMed ID: 9054951
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Controlled release of insulin from polymer matrices. In vitro kinetics.
    Brown L; Siemer L; Munoz C; Langer R
    Diabetes; 1986 Jun; 35(6):684-91. PubMed ID: 3519323
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems.
    Schneider C; Langer R; Loveday D; Hair D
    J Control Release; 2017 Sep; 262():284-295. PubMed ID: 28789964
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches.
    Jain R; Shah NH; Malick AW; Rhodes CT
    Drug Dev Ind Pharm; 1998 Aug; 24(8):703-27. PubMed ID: 9876519
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel.
    Shikanov A; Vaisman B; Shikanov S; Domb AJ
    J Biomed Mater Res A; 2010 Mar; 92(4):1283-91. PubMed ID: 19343769
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect.
    Kovár M; Strohalm J; Etrych T; Ulbrich K; Ríhová B
    Bioconjug Chem; 2002; 13(2):206-15. PubMed ID: 11906257
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vitro and in vivo studies of subcutaneous hydromorphone implants designed for the treatment of cancer pain.
    Lesser GJ; Grossman SA; Leong KW; Lo H; Eller S
    Pain; 1996; 65(2-3):265-72. PubMed ID: 8826516
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Injectable microcapsules prepared with biodegradable poly(alpha-hydroxy) acids for prolonged release of drugs.
    Ogawa Y
    J Biomater Sci Polym Ed; 1997; 8(5):391-409. PubMed ID: 9105978
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new injectable thermogelling material: methoxy poly(ethylene glycol)-poly(sebacic acid-D,L-lactic acid)-methoxy poly(ethylene glycol) triblock co-polymer.
    Zhai Y; Deng L; Xing J; Liu Y; Zhang Q; Dong A
    J Biomater Sci Polym Ed; 2009; 20(7-8):923-34. PubMed ID: 19454160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer.
    Yang MB; Tamargo RJ; Brem H
    Cancer Res; 1989 Sep; 49(18):5103-7. PubMed ID: 2766281
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Drug delivery from catalysed erodible polymeric matrices of poly(ortho ester)s.
    Shih C; Higuchi T; Himmelstein KJ
    Biomaterials; 1984 Jul; 5(4):237-40. PubMed ID: 6487705
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate.
    Tallury P; Alimohammadi N; Kalachandra S
    Dent Mater; 2007 Apr; 23(4):404-9. PubMed ID: 16556460
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigation on injectable, thermally and physically gelable poly(ethylene glycol)/poly(octadecanedioic anhydride) amphiphilic triblock co-polymer nanoparticles.
    Liang Y; Qiao Y; Guo S; Wang L; Zhai Y; Xie C; Hu R; Deng L; Dong A
    J Biomater Sci Polym Ed; 2012; 23(1-4):465-82. PubMed ID: 21294968
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Surface characterization of poly(lactic acid)/everolimus and poly(ethylene vinyl alcohol)/everolimus stents.
    Wu M; Kleiner L; Tang FW; Hossainy S; Davies MC; Roberts CJ
    Drug Deliv; 2010 Aug; 17(6):376-84. PubMed ID: 20373889
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma.
    Yuan X; Tabassi K; Williams JA
    Radiat Oncol Investig; 1999; 7(4):218-30. PubMed ID: 10492162
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Erosion of composite polymer matrices.
    Göpferich A
    Biomaterials; 1997 Mar; 18(5):397-403. PubMed ID: 9061180
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies.
    Sousa F; Fonte P; Cruz A; Kennedy PJ; Pinto IM; Sarmento B
    Methods Mol Biol; 2018; 1674():239-253. PubMed ID: 28921443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.